Abstract:
Apparatus, methods, and computer programs for semiconductor processing in a capacitively-coupled plasma chamber are provided. A chamber includes a bottom radio frequency (RF) signal generator, a top RF signal generator, and an RF phase controller. The bottom RF signal generator is coupled to the bottom electrode in the chamber, and the top RF signal generator is coupled to the top electrode. Further, the bottom RF signal is set at a first phase, and the top RF signal is set at a second phase. The RF phase controller is operable to receive the bottom RF signal and operable to set the value of the second phase. Additionally, the RF phase controller is operable to track the first phase and the second phase to maintain a time difference between the maximum of the top RF signal and the minimum of the bottom RF signal at approximately a predetermined constant value, resulting in an increase of the negative ion flux to the surface of the wafer.
Abstract:
Methods for etching a substrate in a plasma processing chamber having at least a primary plasma generating region and a secondary plasma generating region separated from said primary plasma generating region by a semi-barrier structure. The method includes generating a primary plasma from a primary feed gas in the primary plasma generating region. The method also includes generating a secondary plasma from a secondary feed gas in the secondary plasma generating region to enable at least some species from the secondary plasma to migrate into the primary plasma generating region. The method additionally includes etching the substrate with the primary plasma after the primary plasma has been augmented with migrated species from the secondary plasma.
Abstract:
An apparatus for etching features in an etch layer is provided. A plasma processing chamber is provided, comprising a chamber wall, a chuck, a pressure regulator, an electrode or coil, a gas inlet, and a gas outlet. A gas source comprises a fluorine free deposition gas source and an etch gas source. A controller comprises at least one processor and computer readable media, comprising computer readable code for providing a conditioning for a patterned pseudo-hardmask, wherein the conditioning comprises computer readable code providing a fluorine free deposition gas comprising a hydrocarbon gas, computer readable code for forming a plasma, computer readable code for providing a bias less than 500 volts, and computer readable code for forming a deposition on top of the patterned pseudo-hardmask, computer readable code for etching the etch layer, and computer readable code for cyclically repeating the conditioning and etching at least twice.
Abstract:
An apparatus for etching features in an etch layer is provided. A plasma processing chamber is provided, comprising a chamber wall, a chuck, a pressure regulator, an electrode or coil, a gas inlet, and a gas outlet. A gas source comprises a fluorine free deposition gas source and an etch gas source. A controller comprises at least one processor and computer readable media, comprising computer readable code for providing a conditioning for a patterned pseudo-hardmask, wherein the conditioning comprises computer readable code providing a fluorine free deposition gas comprising a hydrocarbon gas, computer readable code for forming a plasma, computer readable code for providing a bias less than 500 volts, and computer readable code for forming a deposition on top of the patterned pseudo-hardmask, computer readable code for etching the etch layer, and computer readable code for cyclically repeating the conditioning and etching at least twice.
Abstract:
Methods, systems, apparatuses, and computer programs are presented for controlling etch rate and plasma uniformity using magnetic fields. A substrate processing apparatus includes a vacuum chamber including a processing zone for processing a substrate. The apparatus further includes a magnetic field sensor configured to detect a signal representing a residual magnetic field associated with the vacuum chamber. At least one magnetic field source is configured to generate one or more supplemental magnetic fields through the processing zone of the vacuum chamber. A magnetic field controller is coupled to the magnetic field sensor and the at least one magnetic field source. The magnetic field controller is configured to adjust at least one characteristic of the one or more supplemental magnetic fields, causing the one or more supplemental magnetic fields to reduce the residual magnetic field to a pre-determined value.
Abstract:
Computer-implemented methods of optimizing a process simulation model that predicts a result of a semiconductor device fabrication operation to process parameter values characterizing the semiconductor device fabrication operation are disclosed. The methods involve generating cost values using a computationally predicted result of the semiconductor device fabrication operation and a metrology result produced, at least in part, by performing the semiconductor device fabrication operation in a reaction chamber operating under a set of fixed process parameter values. The determination of the parameters of the process simulation model may employ pre-process profiles, via optimization of the resultant post-process profiles of the parameters against profile metrology results. Cost values for, e.g., optical scatterometry, scanning electron microscopy and transmission electron microscopy may be used to guide optimization.
Abstract:
A substrate support in a substrate processing system includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller. The controller at least one of raises the edge ring to selectively cause the edge ring to engage the substrate and lowers the inner portion to selectively cause the edge ring to engage the substrate. The controller determines when the edge ring engages the substrate and calculates at least one characteristic of the substrate processing system based on the determination of when the edge ring engages the substrate.
Abstract:
Computer-implemented methods of optimizing a process simulation model that predicts a result of a semiconductor device fabrication operation to process parameter values characterizing the semiconductor device fabrication operation are disclosed. The methods involve generating cost values using a computationally predicted result of the semiconductor device fabrication operation and a metrology result produced, at least in part, by performing the semiconductor device fabrication operation in a reaction chamber operating under a set of fixed process parameter values. The determination of the parameters of the process simulation model may employ pre-process profiles, via optimization of the resultant post-process profiles of the parameters against profile metrology results. Cost values for, e.g., optical scatterometry, scanning electron microscopy and transmission electron microscopy may be used to guide optimization.
Abstract:
A system for controlling a condition of a wafer processing chamber is disclosed. According the principles of the present disclosure, the system includes memory and a first controller. The memory stores a plurality of profiles of respective ones of a plurality of first control elements. The plurality of first control elements are arranged throughout the chamber. The first controller determines non-uniformities in a substrate processing parameter associated with the plurality of first control elements. The substrate processing parameter is different than the condition of the chamber. The first controller adjusts at least one of the plurality of profiles based on the non-uniformities in the substrate processing parameter and a sensitivity of the substrate processing parameter to the condition.
Abstract:
Embodiments for processing a substrate in a pulsed plasma chamber are provided. A processing apparatus with two chambers, separated by a plate fluidly connecting the chambers, includes a continuous wave (CW) controller, a pulse controller, and a system controller. The CW controller sets the voltage and the frequency for a first radio frequency (RF) power source coupled to a top electrode. The pulse controller is operable to set voltage, frequency, ON-period duration, and OFF-period duration for a pulsed RF signal generated by a second RF power source coupled to the bottom electrode. The system controller is operable to set parameters to regulate the flow of species between the chambers to assist in the negative-ion etching, to neutralize excessive positive charge on the wafer surface during afterglow in the OFF period, and to assist in the re-striking of the bottom plasma during the ON period.