摘要:
A method for producing extreme ultraviolet light includes producing a target material at a target location; supplying pump energy to a gain medium of at least one optical amplifier that has an amplification band to produce an amplified light beam; propagating the amplified light beam through the gain medium using one or more optical components of a set of optical components; delivering the amplified light beam to the target location using one or more optical components of the optical component set; producing with a guide laser a guide laser beam that has a wavelength outside of the amplification band of the gain medium and inside the wavelength range of the optical components; and directing the guide laser beam through the optical component set to thereby align one or more optical components of the optical component set.
摘要:
An LPP EUV light source is disclosed having an optic positioned in the plasma chamber for reflecting EUV light generated therein and a laser input window. For this aspect, the EUV light source may be configured to expose the optic to a gaseous etchant pressure for optic cleaning while the window is exposed to a lower gaseous etchant pressure to avoid window coating deterioration. In another aspect, an EUV light source may comprise a target material positionable along a beam path to participate in a first interaction with light on the beam path; an optical amplifier; and at least one optic directing photons scattered from the first interaction into the optical amplifier to produce a laser beam on the beam path for a subsequent interaction with the target material to produce an EUV light emitting plasma.
摘要:
A method and apparatus may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser output light beam of pulses, which may comprise a ring power amplification stage.
摘要:
An extreme ultraviolet light system includes a drive laser system, an extreme ultraviolet light chamber including an extreme ultraviolet light collector and a target material dispenser including a target material outlet capable of outputting a plurality of portions of target material along a target material path, wherein the target material outlet is adjustable. The extreme ultraviolet light system further includes a drive laser steering device, a detection system including at least one detector directed to detect a reflection of the drive laser reflected from the first one of the plurality of portions of target material and a controller coupled to the target material dispenser, the detector system and the drive laser steering device. The controller includes logic for detecting a location of a first one of the plurality of portions of target material from a first light reflected from the first target material and logic for adjusting the target material dispenser outlet to output a subsequent one of the plurality of portions of target material to a waist of the focused drive laser. A method for generating an extreme ultraviolet light is also disclosed. A system and a method for optimizing an extreme ultraviolet light output is also disclosed.
摘要:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic. In one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.
摘要:
Devices are disclosed herein which may comprise an EUV reflective optic having a surface of revolution that defines a rotation axis and a circular periphery. The optic may be positioned to incline the axis at a nonzero angle relative to a horizontal plane, and to establish a vertical projection of the periphery in the horizontal plane with the periphery projection bounding a region in the horizontal plane. The device may further comprise a system delivering target material, the system having a target material release point that is located in the horizontal plane and outside the region, bounded by the periphery projection and a system generating a laser beam for irradiating the target material to generate an EUV emission.
摘要:
A device is described herein which may comprise an oscillator having an oscillator cavity length, Lo, and defining an oscillator path; and a multi-pass optical amplifier coupled with the oscillator to establish a combined optical cavity including the oscillator path, the combined cavity having a length, Lcombined, where Lcombined=(N+x)*Lo, where “N” is an integer and “x” is a number between 0.4 and 0.6.
摘要:
An apparatus and method is disclosed which may comprise a laser produced plasma EUV system which may comprise a drive laser producing a drive laser beam; a drive laser beam first path having a first axis; a drive laser redirecting mechanism transferring the drive laser beam from the first path to a second path, the second path having a second axis; an EUV collector optical element having a centrally located aperture; and a focusing mirror in the second path and positioned within the aperture and focusing the drive laser beam onto a plasma initiation site located along the second axis. The apparatus and method may comprise the drive laser beam is produced by a drive laser having a wavelength such that focusing on an EUV target droplet of less than about 100 μm at an effective plasma producing energy if not practical in the constraints of the geometries involved utilizing a focusing lens. The drive laser may comprise a CO2 laser. The drive laser redirecting mechanism may comprise a mirror.
摘要:
An apparatus and method is described which may comprise a plasma produced extreme ultraviolet (“EUV”) light source multilayer collector which may comprise a plasma formation chamber; a shell within the plasma formation chamber in the form of a collector shape having a focus; the shell having a sufficient size and thermal mass to carry operating heat away from the multilayer reflector and to radiate the heat from the surface of the shell on a side of the shell opposite from the focus. The material of the shell may comprise a material selected from a group which may comprise silicon carbide, silicon, Zerodur or ULE glass, aluminum, beryllium, molybdenum, copper and nickel. The apparatus and method may comprise at least one radiative heater directed at the shell to maintain the steady state temperature of the shell within a selected range of operating temperatures.
摘要:
Systems and methods are disclosed for protecting an EUV light source plasma production chamber optical element surface from debris generated by plasma formation. In one aspect of an embodiment of the present invention, a shield is disclosed which comprises at least one hollow tube positioned between the optical element and a plasma formation site. The tube is oriented to capture debris while allowing light to pass through the tube's lumen via reflection at relatively small angles of grazing incidence. In another aspect of an embodiment of the present invention, a shield is disclosed which is heated to a temperature sufficient to remove one or more species of debris material that has deposited on the shield. In yet another aspect of an embodiment of the present invention, a system is disclosed which a shield is moved from a light source plasma chamber to a cleaning chamber where the shield is cleaned.