摘要:
A process for preparing a supported molybdenum carbide composition which comprises impregnating a porous support with a solution of hexamolybdenum dodecachloride, drying the impregnated support and then heating in a carbiding atmosphere at a temperature of about 650.degree.-750.degree. C.
摘要:
The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
摘要:
A process for the production of organic chemicals and fuels from lignin in the presence of a molybdenum or tungsten based catalyst, comprising mixing the lignin with the catalyst and a solvent in a sealed reactor, introducing an inert gas or hydrogen to the reactor to replace oxygen therein, and heating the sealed reactor to perform a depolymerization reaction at a reaction temperature of above 200° C. to obtain liquid products, which include aromatic compounds, esters, alcohols, monophenols and benzyl alcohols.
摘要:
The present invention relates to a stabilized rhenium-based heterogeneous catalyst, obtainable by a process comprising contacting a rhenium-based heterogeneous catalyst with a stabilizing agent at a temperature in a range from 0-100° C., the stabilizing agent comprising an aliphatic hydrocarbon compound and use thereof.
摘要:
Olefins and diolefins, such as 1,3-butiadiene, may be produced by a method utilizing a series of bromination and dehydrobromination reactions. Bromine may be reacted with n-butane to form dibromobutane. The dibromobutanes may be dehydrobrominating to form 1,3-butadiene. The method may include reacting butene with bromine to form bromobutenes, and dehydrobrominating the bromobutenes to form 1,3-butadiene. The method may include reacting butene with hydrogen bromide in the presence of oxygen to form bromobutenes, and dehydrobrominating the bromobutenes to form 1,3-butadiene. The method may include reacting butene with bromine to form dibromobutanes, and dehydrobrominating the dibromobutanes to form 1,3-butadiene.