摘要:
Systems and methods for controlling directionality of ion flux at an edge region within a plasma chamber are described. One of the systems includes a radio frequency (RF) generator that is configured to generate an RF signal, an impedance matching circuit coupled to the RF generator for receiving the RF signal to generate a modified RF signal, and a plasma chamber. The plasma chamber includes an edge ring and a coupling ring located below the edge ring and coupled to the first impedance matching circuit to receive the modified RF signal. The coupling ring includes an electrode that generates a capacitance between the electrode and the edge ring to control the directionality of the ion flux upon receiving the modified RF signal.
摘要:
Substrate treating systems are disclosed. The system may include a chamber with a processing space, a supporting unit provided in the processing space to support a substrate, a gas supplying unit provided in the processing space to supply gas into the processing space, a plasma source unit generating plasma from the gas, and a liner unit disposed to enclose the supporting unit. The supporting unit may include a supporting plate supporting a substrate. The liner unit may include an inner liner enclosing the supporting plate and an actuator vertically moving the inner liner.
摘要:
A heat transfer sheet affixing method where a focus ring is pressed by a pressing part to a heat transfer sheet placed on a heat transfer sheet mounting part of a plasma processing apparatus to affix the heat transfer sheet to the focus ring. The method includes reducing a pressure to place the heat transfer sheet in a reduced-pressure atmosphere, heating the heat transfer sheet, and pressing the focus ring by the pressing part to the heat transfer sheet. The reducing, the heating, and the pressing are performed concurrently at least for a predetermined period of time.
摘要:
A plasma processing method includes removing a deposit, which adheres to a member within a processing vessel and includes at least one of a transition metal and a base metal, by plasma of a processing gas, wherein the processing gas includes Ar gas and a CHzFw gas, and does not includes a chlorine-based gas and a nitrogen-based gas. The deposit is removed by the plasma of the processing gas while applying a negative DC voltage to the member within the processing vessel, and the negative DC voltage is set to be equal to or less than −100V such that argon ions in the plasma of the processing gas collide with the member within the processing vessel and the deposit is removed by sputtering of the argon ions.
摘要:
Apparatus and methods for plasma etching are disclosed. In one embodiment, a method for etching a plurality of features on a wafer includes positioning the wafer within a chamber of a plasma etcher, generating plasma ions using a radio frequency power source and a plasma source gas, directing the plasma ions toward the wafer using an electric field, and focusing the plasma ions using a plasma focusing ring. The plasma focusing ring is configured to increase a flux of plasma ions arriving at a surface of the wafer to control the formation of the plurality of features and structures associated therewith.
摘要:
Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments, a one-piece process kit shield configured for use in a processing chamber for processing a substrate having a given diameter includes: a cylindrical body having an upper portion and a lower portion; an annular heat transfer channel disposed within the upper portion; and a cover ring section extending radially inward from the lower portion and having an annular leg extending from a bottom surface of the cover ring section, wherein the annular leg is configured to interface with a deposition ring to form a tortuous path between the bottom surface and the deposition ring.
摘要:
An edge ring assembly for a plasma processing chamber is provided, including: an edge ring configured to surround an electrostatic chuck (ESC) that is configured for electrical connection to a first RF power supply, the ESC having a top surface for supporting a substrate and an annular step surrounding the top surface, the annular step defining an annular shelf that is lower than the top surface; an annular electrode disposed below the edge ring in the annular step and above the annular shelf; a dielectric ring disposed below the annular electrode for isolating the annular electrode from the ESC, the dielectric ring positioned in the annular step over the annular shelf; and, a plurality of insulated connectors disposed through the ESC and through the dielectric ring, each of the plurality of insulated connectors providing electrical connection between a second RF power supply and the annular electrode.
摘要:
A method and apparatus are provided for plasma etching a substrate in a processing chamber. A focus ring assembly circumscribes a substrate support, providing uniform processing conditions near the edge of the substrate. The focus ring assembly comprises two rings, a first ring and a second ring, the first ring comprising quartz, and the second ring comprising monocrystalline silicon, silicon carbide, silicon nitride, silicon oxycarbide, silicon oxynitride, or combinations thereof. The second ring is disposed above the first ring near the edge of the substrate, and creates a uniform electric field and gas composition above the edge of the substrate that results in uniform etching across the substrate surface.
摘要:
An apparatus for processing a substrate is provided. A processing chamber is provided. A substrate support for supporting the substrate is within the processing chamber. An edge ring is on the substrate support, wherein the edge ring comprises nitrogen free doped quartz with a dopant of either AlO and YO or a dopant of LaO. A gas inlet for providing gas into the processing chamber is above a surface of the substrate. At least one electrode provides RF power into the processing chamber.
摘要:
An ICP A plasma reactor having an enclosure wherein at least part of the ceiling forms a dielectric window. A substrate support is positioned within the enclosure below the dielectric window. An RF power applicator is positioned above the dielectric window to radiate RF power through the dielectric window and into the enclosure. A plurality of gas injectors are distributed uniformly above the substrate support to supply processing gas into the enclosure. A circular baffle is situated inside the enclosure and positioned above the substrate support but below the plurality of gas injectors so as to redirect the flow of the processing gas.