摘要:
A silicon wafer which has DZ layers formed on both sides thereof by heat treatment in an atmosphere of reducing gas (such as hydrogen) or rare gas (such as argon) with a specific temperature profile for heating, holding, and cooling, and which also has a gettering site of BMD in the bulk inside the DZ layer. A silicon wafer which has a silicon epitaxial layer formed on one side thereof. The DZ layer and the silicon epitaxial layer contain dissolved oxygen introduced into their surface parts, with the concentration and distribution of dissolved oxygen properly controlled. Introduction of oxygen into the surface part is accomplished by heat treatment and ensuing rapid cooling in an atmosphere of oxygen-containing gas.
摘要:
By specifying an initial oxygen concentration in a silicon single crystal and a concentration of thermal donors produced according to a thermal history from 400° C. to 550° C. that the silicon single crystal undergoes during crystal growth, a nucleation rate of oxygen precipitates produced in the silicon single crystal while the silicon single crystal is subjected to a heat treatment is determined. Further, by specifying the heat treatment condition of the silicon single crystal, an oxygen precipitate density and an amount of precipitated oxygen under a given heat treatment condition are predicted by calculation.
摘要:
The present invention provides a method for reusing a delaminated wafer, which is a method for applying reprocessing that is at least polishing to a delaminated wafer 17 byproduced when manufacturing an SOI wafer based on an ion implantation delamination method and thereby again reusing the delaminated wafer 17 as a bond wafer 21 in an SOI wafer manufacturing process, wherein, at least, a CZ wafer 11 used as the bond wafer is a low-defect wafer whose entire surface is formed of an N region, and an RTA treatment is carried out in the reprocessing with respect to the delaminated wafer 17 at a higher temperature than a temperature in formation of a thermal oxide film 12 performed with respect to the bond wafer in the SOI wafer manufacturing process. As a result, there can be provided the method for reusing a delaminated wafer which does not induce a bonding failure or a reduction in quality of an SOI layer even if the delaminated wafer byproduced when the CZ wafer having a large diameter of 200 mm or above is used as the bond wafer to fabricate the SOI wafer based on the ion implantation delamination method is repeatedly reused as the bond wafer.
摘要:
Disclosed herein are devices, methods and systems for implementing gettering layers. Devices including gettering layers can be implemented such that a gettering layer doped with carbon, boron, fluorine or any other appropriate impurity is formed on a semiconductor substrate, a device layer is formed on the gettering layer, and a device region is formed in the device layer having a depth that maintains a distance in the device layer between the gettering layer and the device region.
摘要:
An active layer side silicon wafer is heat-treated in an oxidizing atmosphere to thereby form a buried oxide film therein. The active layer side silicon wafer is then bonded to a supporting side wafer with said buried oxide film interposed therebetween thus to fabricate an SOI wafer. Said oxidizing heat treatment is carried out under a condition satisfying the following formula: [Oi]≦2.123×1021exp(−1.035/k(T+273)), where, T is a temperature of the heat treatment, and [Oi] (atmos/cm3) is an interstitial oxygen concentration.
摘要:
A silicon wafer is thermal-annealed in an atmosphere to form new vacancies therein by thermal annealing and the atmosphere in the thermal annealing contains a nitride gas having a lower decomposition temperature than a decomposable temperature of N2 so that the thermal annealing is carried out at a lower temperature or for a short time to suppress generation of slip and to provide satisfactory surface roughness.
摘要:
A method in which SSDs are reliably reduced while reducing void defects other than the SSDs on a wafer surface, which is essential for an annealed wafer, and ensuring that BMDs serving as gettering source in a bulk are generated, in order to stabilize the quality of the annealed wafer. Considering that annealing a silicon wafer leads to an increase of density (quantity) of deposits associated with oxygen and nitrogen and forming a core of the SSDs, SSDs are decreased by reducing the density (quantity) of the deposits associated with oxygen and nitrogen by controlling three parameters of oxygen concentration, nitrogen concentration and cooling concentration during the process of pulling and growing the silicon single crystal 6 before annealing. Alternatively, SSD is reduced by polishing after annealing.
摘要:
A silicon epitaxial wafer of the invention comprises a silicon single crystal wafer sliced from a CZ silicon ingot doped with carbon in a concentration range of not less than 5×1015 atoms/cm3 and not more than 5×1017 atoms/cm3 and an epitaxial layer consisting of a silicon single crystal epitaxially grown on a front surface of the silicon single crystal wafer. A polycrystalline silicon layer having a thickness of not less than 0.5 μm and not more than 1.5 μm is formed on a back surface of the silicon single crystal wafer.
摘要翻译:本发明的硅外延晶片包括从掺杂有不少于5×10 15原子/ cm 3且不大于5×10 17原子/ cm 3的浓度的碳的CZ硅锭切片的硅单晶晶片和由硅构成的外延层 在硅单晶晶片的正面上外延生长的单晶。 在硅单晶晶片的背面形成厚度不小于0.5μm且不大于1.5μm的多晶硅层。
摘要:
This invention generally relates to a process for suppressing oxygen precipitation in epitaxial silicon wafers having a heavily doped silicon substrate and a lightly N-doped silicon epitaxial layer by dissolving existing oxygen clusters and precipitates within the substrate. Furthermore, the formation of oxygen precipitates is prevented upon subsequent oxygen precipitation heat treatment.
摘要:
Various embodiments of the present invention relate to systems, devices, and methods for treating a semiconductor substrate, such as a silicon wafer, in order to reduce current leakage therein. A semiconductor substrate is provided a plurality of heating treatments that create a denuded zone adjacent to a surface of the substrate and a core zone below the denuded zone. Oxygen impurities within the denuded zone are removed through an oxygen out-diffusion heat treatment. A plurality of macroscopic bulk micro defects is generated within the core zone through the combination of an agglomeration heat treatment and a macroscopic growth heat treatment. This plurality of macroscopic bulk micro defects inhibits migration of metallic contaminants that are located within the substrate. For exemplary purposes, certain embodiments are described relating to a semiconductor wafer heated in a sequence of three treatments. Each treatment has a temperature range in which the substrate is heated and an associated time range during which the treatment occurs.