Abstract:
There is disclosed photovoltaic device structures which trap admitted light and recycle it through the contained photosensitive materials to maximize photoabsorption. For example, there is disclosed a photosensitive optoelectronic device comprising: a first reflective layer comprising a thermoplastic resin; a second reflective layer substantially parallel to the first reflective layer; a first transparent electrode layer on at least one of the first and second reflective layer; and a photosensitive region adjacent to the first electrode, wherein the first transparent electrode layer is substantially parallel to the first reflective layer and adjacent to the photosensitive region, and wherein the device has an exterior face transverse to the planes of the reflective layers where the exterior face has an aperture for admission of incident radiation to the interior of the device.
Abstract:
A sensor unit (100) provided with a substrate (101), a plurality of light-receiving units (102) that are provided on the substrate (101) and detect light, and a diffraction grating layer (103) that is provided on the substrate (101) and the light-receiving units (102) and has at least two diffraction means for diffracting light of corresponding wavelengths and condensing the light onto the light-receiving units, wherein at least two of the diffraction means are composed from holograms formed on a first diffraction grating layer and at least a portion of the plurality of holograms formed on the first diffraction grating layer overlap at least partially with another adjacent hologram.
Abstract:
Digital camera systems and methods are described that provide a color digital camera with direct luminance detection. The luminance signals are obtained directly from a broadband image sensor channel without interpolation of RGB data. The chrominance signals are obtained from one or more additional image sensor channels comprising red and/or blue color band detection capability. The red and blue signals are directly combined with the luminance image sensor channel signals. The digital camera generates and outputs an image in YCrCb color space by directly combining outputs of the broadband, red and blue sensors.
Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.
Abstract:
There is provided an optical mechanism including a substrate, an image sensor chip, a light source, a blocking member and a securing member. The image sensor chip is attached to the substrate and has an active area. The light source is attached to the substrate. The blocking member covers the image sensor chip and has an opening to expose at least the active area of the image sensor chip. The securing member fits on the blocking member to secure the blocking member to the substrate.
Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.
Abstract:
A solar energy collector includes a generally tubular housing or multiple tubular housings each having an open end for receipt of solar rays which are then reflected from a generally conical mirror within the housing onto solar cells lining the inside surface of the housing. Various mechanisms are utilized to favorably orient the housing or otherwise direct the solar rays and to maximize the incidence of reflected solar rays onto solar cells.
Abstract:
The disclosure relates to an image sensor comprising a substrate region in a semiconductor material; an active layer in contact with the substrate region; and a photodiode array formed in the active layer. The substrate region has a doping level such that the resistivity of the substrate region is less than 6 mOhm•cm.
Abstract:
A strain-balanced photodetector is provided for detecting infrared light at an extended cutoff wavelength in the range of 4.5 μm or more. An InAsSb absorber layer has an Sb content is grown in a lattice-mismatched condition to a GaSb substrate, and a plurality of GaAs strain-compensating layers are interspersed within the absorber layer to balance the strain of the absorber layer due to the lattice mismatch. The strain-compensation layers allow the absorber to achieve a thickness exhibiting sufficient absorption efficiency while extending the cutoff wavelength beyond that possible in a lattice-matched state. Additionally, the strain-compensation layers are sufficiently thin to be substantially quantum-mechanically transparent such that they do not substantially affect the transmission efficiency of the absorber. The photodetector is preferably formed as a majority carrier filter photodetector exhibiting minimal dark current, and may be provided individually or in a focal plane array.