Abstract:
The present disclosure provides an electron source, including one or more tips, wherein at least one of the tips comprises one or more fixed emission sites, wherein at least one of the tips includes one or more fixed emission sites, wherein the emission sites includes a reaction product of metal atoms on a surface of the tip with gas molecules.
Abstract:
A charged-particle beam apparatus is provided with a cathode to emit charged particle beams, an anode to propagate the charged particle beams emitted from the cathode in a sample surface direction, an aperture to propagate a charged particle beam passing through an opening at a predetermined position and of a predetermined shape, among the charged particle beams passing through the anode, in the sample surface direction, and a first electrode that is disposed between the anode and the aperture, and is set at a first electric potential of a polarity repelling a polarity of an ion generated due to collision of a charged particle beam.
Abstract:
A charged particle beam device is described, which includes: a beam source configured to generate a charged particle beam propagating along an optical axis (A); an aperture device with a plurality of apertures configured to create a plurality of beamlets from the charged particle beam; and a field curvature corrector. The field curvature corrector includes: a first multi-aperture electrode with a first plurality of openings having diameters that vary as a function of a distance from the optical axis (A); a second multi-aperture electrode with a second plurality of openings; and an adjustment device configured to adjust at least one of a first electrical potential (U1) of the first multi-aperture electrode and a second electrical potential (U2) of the second multi-aperture electrode. Further, a field curvature corrector and methods of operating a charged particle beam device are described.
Abstract:
A charged-particle beam apparatus is provided with a cathode to emit charged particle beams, an anode to propagate the charged particle beams emitted from the cathode in a sample surface direction, an aperture to propagate a charged particle beam passing through an opening at a predetermined position and of a predetermined shape, among the charged particle beams passing through the anode, in the sample surface direction, and a first electrode that is disposed between the anode and the aperture, and is set at a first electric potential of a polarity repelling a polarity of an ion generated due to collision of a charged particle beam.
Abstract:
Sterilization device, in particular for sterilization of packaging material, comprising a first chamber, a barrier element and a connection area. The first chamber is adapted to provide charge carriers for sterilization, and the connection area is connected to a third chamber so that the barrier element forms at least one part of the boundary of a volume in which a first atmosphere exists.
Abstract:
Provided herein is an apparatus comprising a deposition chamber with a cathode, and a means for creating an asymmetric field about the cathode.
Abstract:
A cathode operating temperature adjusting method includes acquiring an approximate equation approximating a correlation between an emission current value in an electron beam source using a cathode and an operating temperature of the cathode at which a bias voltage becomes saturated at the emission current, measuring a current density of an electron beam from the cathode when in the state where an n-th emission current value and an n-th cathode operating temperature are set in the electron beam source, determining whether the measured current density is within a first tolerance range, changing the n-th emission current value to an (n+1)th emission current value when the measured current density is not within the first tolerance range, calculating an operating temperature of the cathode corresponding to the (n+1)th emission current value by the approximate equation, and setting the calculated operating temperature, as an (n+1)th cathode operating temperature, in the electron beam source.
Abstract:
An electron gun cathode (104) is column shaped, and emits electrons by being heated. A holder (103), which covers the bottom and sides of the electron gun cathode, has electrical conductivity and holds the electron gun cathode, and is composed of a material that does not easily react with the electron gun cathode when in a heated state, is provided. The tip of the electron gun cathode (104) protrudes from the holder (103) so as to be exposed, and electrons are emitted from the tip toward the front by applying an electric field to the tip.
Abstract:
An electron beam apparatus, in which an electron beam emitted from an electron gun having a cathode and an anode is focused and irradiated onto a sample, and secondary electrons emanated from the sample are directed into a detector, the apparatus further comprising means for optimizing irradiation of the electron beam emitted from the electron gun onto the sample, the optimizing means may be two-stage deflectors disposed in proximity to the electron gun which deflects and directs the electron beam emitted in a specific direction so as to be in alignment with the optical axis direction of the electron beam apparatus, the electron beam emitted in the specific direction being at a certain angle with respect to the optical axis due to the fact that, among the crystal orientations of said cathode, a specific crystal orientation allowing a higher level of electron beam emission out of alignment with the optical axis direction.
Abstract:
An electron gun for emitting an electron beam traveling along a beam axis includes a cathode having a tip, the tip having substantially a circular conic shape and a tip surface substantially at the beam axis, the cathode being applied with a first voltage, an anode having a first aperture substantially on the beam axis and being applied with a second voltage higher than the first voltage, a control electrode having a second aperture substantially on the beam axis and being applied with a voltage lower that the first voltage to control a current of the cathode, the second aperture being larger than the tip surface, a guide electrode having a third aperture substantially on the beam axis, being arranged between the cathode and the anode, and being applied with a voltage higher than the first voltage and lower than the second voltage, the third aperture being smaller than the tip surface, and a lens electrode having a fourth aperture substantially on the beam axis, being arranged between the guide electrode and the anode, and being applied with a voltage lower than the first voltage to form a cross-over image of the electron beam, the fourth aperture being larger than the third aperture.