Abstract:
A fabricating method of an anti-fuse structure, comprising: providing a substrate having a first conductive plug and a second conductive plug separated from the first conductive plug; forming an amorphous silicon layer on the substrate, wherein a portion of the amorphous silicon layer overlapping the first conductive plug is defined as a first region, and a portion of the amorphous silicon layer overlapping the second conductive plug is defined as a second region; performing an implantation process to the first region and the second region, wherein the first region has a higher doping concentration than the second region; forming a titanium nitride layer on the amorphous silicon layer; and patterning the titanium nitride layer and the amorphous silicon layer.
Abstract:
A method of manufacturing a semiconductor structure, comprising: providing a preliminary structure having a first region and a second region and comprising a plurality of first trenches in the first region; forming a metal layer filling the first trenches covering on the preliminary structure, wherein the metal layer comprises a concave portion in the second region and the concave portion defines an opening; forming a metal nitride layer on the metal layer by an nitride treatment; and performing a planarization process to remove the metal nitride layer and a portion of the metal layer to expose the preliminary structure.
Abstract:
Semiconductor devices and method of manufacturing such semiconductor devices are provided for improved FinFET memory cells to avoid electric short often happened between metal contacts of a bit cell, where the meal contacts are positioned next to a dummy gate of a neighboring dummy edge cell. In one embodiment, during the patterning of a gate layer on a substrate surface, an improved gate slot pattern is used to extend the lengths of one or more gate slots adjacent bit lines so as to pattern and sectionalize a dummy gate line disposed next to metal contacts of an active memory cell. In another embodiment, during the patterning of gate lines, the distances between one or more dummy gates lines disposed adjacent an active memory cell are adjusted such that their locations within dummy edge cells are shifted in position to be away from metal contacts of the active memory cell.
Abstract:
A method of an interfacial oxide layer formation comprises a plurality of steps. The step (S1) is to remove a native oxide layer from a surface of a substrate; the step (S2) is to form an oxide layer on a surface of a substrate by piranha solution (SPM); the step (S3) is to cleaning a surface of the oxide layer by standard clean 1 (SC1), and the step (S4) is to etch he oxide layer by a solution comprising diluted hydrogen fluoride (dHF) and ozonized pure water (DIO3).
Abstract:
A trench gate metal oxide semiconductor field effect transistor includes a substrate and a gate. The substrate has a trench. The trench is extended downwardly from a surface of the substrate. The gate includes an insertion portion and a symmetrical protrusion portion. The insertion portion is embedded in the trench. The symmetrical protrusion portion is symmetrically protruded over the surface of the substrate.
Abstract:
The present invention provides a transistor comprising a substrate having a surface; a first deep well region in the substrate; a second deep well region in the substrate, isolated from and encircling the first deep well region; a first well region in the substrate and on the first deep well region; two second well regions in the second deep well region and respectively at two opposite sides of the first well region; a source region in the first well region and adjacent to the surface; two drain regions in the two second well regions respectively and adjacent to the surface; two gate structures on the surface, wherein each of the two gate structures is between the source region and one of the drain regions respectively; and a guard ring in the substrate encircling the second deep well region, and on the periphery of the transistor.
Abstract:
A method for manufacturing a non-volatile memory with SONOS memory cells, which includes steps of: providing a substrate; forming a first gate oxide layer and a first gate conductive layer onto the substrate; forming a MOS transistor gate by executing a photolithography process on the first gate conductive layer, and then forming an ONO structure on the substrate; and forming a second gate conductive layer on the ONO substrate, and then forming a NVM transistor gate by executing a photolithography process on the second gate conductive layer.
Abstract:
A method for planarizing a semiconductor device includes steps herein. A substrate is provided, on which a stop layer is formed. A trench is formed in the substrate. A first semiconductor film is deposited conformally on the stop layer and the trench. A second semiconductor film is deposited to fill the trench and cover the first semiconductor film. A chemical-mechanical polishing process is performed until the stop layer is exposed. A removal rate of the chemical-mechanical polishing process on the first semiconductor film is higher than that on the second semiconductor film. The first dielectric layer on the substrate selectively is removed.
Abstract:
An etching method adapted to forming grooves in Si-substrate and FinFET transistor manufactured thereof are provided. The etching method includes providing a silicon substrate, at least two gate structures formed on the silicon substrate and at least two gate spacer structures disposed on the silicon substrate; performing a first etching process on the silicon substrate to form a first groove, which has a base and two inclined sidewalls, ascending to respective bottoms of the gate structures, and are interconnected with the base, respectively; and performing a second etching process on the silicon substrate at the base of the first groove, so as to form a second groove in a trench shape, wherein the two inclined sidewalls of the first groove are interconnected with the second groove respectively, and the first etching process is substantially different from the second etching process.
Abstract:
A method of fabricating an electrostatic discharge protection structure includes the following steps. Firstly, a semiconductor substrate is provided. Plural isolation structures, a well region, a first conductive region and a second conductive region are formed in the semiconductor substrate. The well region contains first type conducting carriers. The first conductive region and the second conductive region contain second type conducting carriers. Then, a mask layer is formed on the surface of the semiconductor substrate, wherein a part of the first conductive region is exposed. Then, a first implantation process is performed to implant the second type conducting carriers into the well region by using the mask layer as an implantation mask, so that a portion of the first type conducting carriers of the well region is electrically neutralized and a first doped region is formed under the exposed part of the first conductive region.