Abstract:
A method of controlling chemical mechanical polishing includes polishing a substrate having a plurality of protrusions, monitoring the substrate during polishing with an in-situ monitoring system to generate a signal, the in-situ monitoring system including an acoustic sensor, a motor current sensor or a motor torque sensor, and detecting breakage of the protrusions based on the signal.
Abstract:
Methods adapted to clean a chemical mechanical polishing (CMP) pad are disclosed. The methods include positioning an energized fluid delivery assembly over a CMP polishing pad; rotating the polishing pad on a platen; energizing a fluid within the energized fluid delivery assembly; applying the energized fluid to the polishing pad to dislodge slurry residue and debris; and removing the dislodged slurry residue and debris using a vacuum suction unit. Systems and apparatus for carrying out the methods are provided, as are numerous additional aspects.
Abstract:
A cryogenic cleaning apparatus is disclosed. The cryogenic cleaning apparatus has a source of cryogen, a nozzle coupled to the source of cryogen, the nozzle including a main passage adapted to receive the cryogen, one or more auxiliary gas inlets adapted to supply an auxiliary gas to mix with the cryogen either within the nozzle or at a nozzle exit of the nozzle to produce cryogen droplets, and a heated holder adapted to receive a substrate to be cleaned. Cryogenic cleaning methods adapted to clean substrates are provided, as are numerous other aspects.
Abstract:
A chemical mechanical polishing system includes a platen to support a polishing pad having a polishing surface, a conduit having an inlet to be coupled to a gas source, and a dispenser coupled to the conduit and having a convergent-divergent nozzle suspended over the platen to direct gas from the gas source onto the polishing surface of the polishing pad.
Abstract:
A method of fabrication of a substrate includes, after deposition of an outer layer on a substrate and before polishing of an exposed surface of the outer layer of the substrate, performing a hydroblasting treatment of a selected portion of the exposed surface by directing a treatment liquid from a nozzle at a sufficiently high velocity onto the selected portion to remove material from the selected portion such that a thickness non-uniformity of the outer layer is reduced. Then the outer layer of the treated substrate is subject to chemical mechanical polishing to planarize and reduce a thickness of the outer layer.
Abstract:
Methods and apparatus for creating a dual metal interconnect on a substrate. In some embodiments, a first liner of a first nitride material is deposited into at least one 1X feature and at least one wider than 1X feature, the first liner has a thickness of less than or equal to approximately 12 angstroms; a second liner of a first metal material is deposited into the at least one 1X feature and at least one wider than 1X feature; the first metal material is reflowed such that the at least one 1X feature is filled with the first metal material and the at least one wider than 1X feature remains unfilled with the first metal material; a second metal material is deposited on the first metal material, and the second metal material is reflowed such that the at least one wider than 1X feature is filled with the second metal material.
Abstract:
A chemical mechanical polishing system includes a platen to hold a polishing pad, a carrier head to hold a substrate against a polishing surface of the polishing pad, and a controller. The polishing pad has a polishing control groove. The carrier is laterally movable by a first actuator across the polishing pad and rotatable by a second actuator. The controller synchronizes lateral oscillation of the carrier head with rotation of the carrier head such that over a plurality of successive oscillations of the carrier head such that when a first angular swath of an edge portion of the substrate is at an azimuthal angular position about an axis of rotation of the carrier head the first angular swath overlies the polishing surface and when a second angular swath of the edge portion of the substrate is at the azimuthal angular position the second angular swath overlies the polishing control groove.
Abstract:
A chemical mechanical polishing system includes a platen to support a polishing pad having a polishing surface, a source of coolant, a dispenser having one or more apertures suspended over the platen to direct coolant from the source of coolant onto the polishing surface of the polishing pad; and a controller coupled to the source of coolant and configured to cause the source of coolant to deliver the coolant through the nozzles onto the polishing surface during a selected step of a polishing operation.
Abstract:
The present disclosure relates to load cups that include an annular substrate station configured to receive a substrate. The annular substrate station surrounds a nebulizer located within the load cup. The nebulizer includes a set of energized fluid nozzles disposed on an upper surface of the nebulizer adjacent to an interface between the annular substrate station and the nebulizer. The set of energized fluid nozzles are configured to release energized fluid at an upward angle relative to the upper surface.
Abstract:
A chemical mechanical polishing apparatus includes a platen having a top surface to hold a polishing pad, a carrier head to hold a substrate against a polishing surface of the polishing pad during a polishing process, and a temperature monitoring system. The temperature monitoring system includes a non-contact thermal sensor positioned above the platen that has a field of view of a portion of the polishing pad on the platen. The sensor is rotatable by the motor around an axis of rotation so as to move the field of view across the polishing pad.