Abstract:
Wireless device, method, and computer readable media are disclosed for determining which channel status information (CSI) report of a user equipment (UE) to drop from a physical uplink control channel (PUCCH) packet. The method may include determining that a first CSI report and a second CSI report are to be sent in the PUCCH, where the first CSI report has a first reporting type and a first CSI sub-frame set, and the second CSI report has a second reporting type and a second CSI sub-frame set. The method may include determining to drop the first CSI report if the first CSI sub-frame set has a second lower priority than the second CSI sub-frame set. The determination to drop may be further based on a CSI processor index, serving cell index, and the CSI report priority.
Abstract:
Technology for a first eNodeB is disclosed. The first eNodeB can decode an uplink-downlink (UL-DL) time-division duplexing (TDD) subframe reconfiguration received from a second eNodeB. The UL-DL TDD subframe reconfiguration can be for the first eNodeB. The first eNodeB can encode the UL-DL TDD subframe reconfiguration received from the second eNodeB for transmission to a plurality of user equipment (UEs).
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for mapping media access control (MAC) protocol data units (PDUs) that are used to transmit scheduling assignment (SA) discovery, and/or device-to-device (D2D) data. Embodiments herein may describe how one or more MAC PDUs may be mapped into a time resource pattern for transmissions (T-RPT). Embodiments herein may further describe examples of how and when a UE may skip subframes in transmissions of the SA and/or data. Additionally, embodiments herein may further describe examples of how a UE may behave if the UE cannot transmit one or more scheduled instances of SA or data. Additionally, embodiments herein may describe resolution of collisions of D2D discovery messages in the time domain. Other embodiments may be described and/or claimed.
Abstract:
Technology is discussed to allow transmission points within a Wireless Wide Area Network (WWAN) to adapt to Up Link (UL) and Down Link (DL) traffic demands independently. To mitigate potential interference arising from transmission points scheduled for conflicting UL and DL transmissions, measurements between transmission points can be made to indicate a level of coupling. Based on the various levels of coupling between transmission points, clusters can be formed. Where a high level of coupling is present, transmission points can be included in a common cluster. Where a low level of coupling is present, they can be isolated. Transmission points within the same cluster are scheduled with a common pattern of UL and DL transmissions to avoid interference. Transmission points in different clusters can have different patterns of UL and DL transmission to independently adapt to the relative demands for UL and DL transmissions experienced within these different clusters.
Abstract:
Embodiments for boosting coverage of wireless signals are generally described herein. A wireless communication device for boosting coverage of wireless signals may include a processor arranged to configure resource blocks for a sub-frame for transmitting data in a communication session, wherein the sub-frame includes at least one slot formed by a matrix of sub-carriers in the frequency domain and symbols in the time domain and a transceiver, coupled to the processor, the transceiver being arranged to establish communication with entities in a network, the transceiver being further arranged to, under direction of the processor, map modulated symbols to at least a partial resource block to form a coverage boosting resource unit, the coverage boosting resource unit spreading at least one data bit over at least the partial resource block.
Abstract:
Technology for adapting uplink-downlink (UL-DL) time-division duplexing (TDD) subframe configurations in a heterogeneous network (HetNet) is disclosed. One method can include a reference enhanced Node B (eNB) determining a preferred adaptive UL-DL configuration. The eNB can receive node configuration information for at least one neighboring node. The eNB can reconfigure an adaptive UL-DL configuration for at least one of the reference eNB and the at least one neighboring node based on the node configuration information and sounding reference signal (SRS) subframe scheduling of the reference eNB and the at least one neighboring eNB.
Abstract:
Embodiments disclosed herein are directed to new mechanisms of resource allocation for transmission of positioning or ranging (e.g., sounding) reference signals. The embodiments may provide flexible and/or efficient resource allocation, and may improve accuracy of user positioning. The techniques described herein may be applied for multiple use cases, including UAS, V2X, IIoT, etc.
Abstract:
A non-transitory computer-readable storage medium stores instructions for execution by one or more processors of a UE. The instructions configure the UE for low latency NR positioning in a 5G NR network and cause the UE to perform operations comprising decoding configuration signaling received from a base station. The configuration signaling includes measurement gap information and scheduling information for a UE measurement report. A downlink (DL) positioning reference signal (PRS) received from the base station is decoded. Positioning measurements are performed using the DL PRS. The positioning measurements are performed based on a measurement gap corresponding to the measurement gap information. The UE measurement report is encoded for a UL transmission to the base station based on the scheduling information. The UE measurement report includes the positioning measurements.
Abstract:
A non-transitory computer-readable storage medium stores instructions for execution by one or more processors of a UE. The instructions configure the UE for low latency NR positioning in a 5G NR network and cause the UE to perform operations comprising decoding configuration signaling received from a base station. The configuration signaling includes measurement gap information and scheduling information for a UE measurement report. A downlink (DL) positioning reference signal (PRS) received from the base station is decoded. Positioning measurements are performed using the DL PRS. The positioning measurements are performed based on a measurement gap corresponding to the measurement gap information. The UE measurement report is encoded for a UL transmission to the base station based on the scheduling information. The UE measurement report includes the positioning measurements.
Abstract:
A computer-readable storage medium stores instructions to configure a UE for sidelink operation in a 5G NR network, and to cause the UE to perform operations including decoding a first sidelink transmission received from a second UE. The first sidelink transmission includes a first resource reservation for a subsequent sidelink transmission by the second UE. A second sidelink transmission received from a third UE is decoded. The second sidelink transmission includes a second resource reservation for a subsequent sidelink transmission by the third UE. A co-channel collision is detected based on the first resource reservation and the second resource reservation being in a same sidelink slot. A feedback message is encoded for transmission to the second UE and the third UE. The feedback message indicates the co-channel collision.