Abstract:
Disclosed is a substrate processing system which enables combined static and pass-by processing. Also, a system architecture is provided, which reduces footprint size. The system is constructed such that the substrates are processed therein vertically, and each chamber has a processing source attached to one sidewall thereof, wherein the other sidewall backs to a complementary processing chamber. The chamber system can be milled from a single block of metal, e.g., aluminum, wherein the block is milled from both sides, such that a wall remains and separates each two complementary processing chambers.
Abstract:
A magnetic media disk is fabricated by depositing magnetic layers over the disk, then depositing protective later over the magnetic layer, and then performing ion implant process to implant ions into the protective coating. A system for performing the ion implant of the magnetic media disk includes two ion implant chambers. During operation one chamber performs ion implant and one chamber performs chamber cleaning by maintaining inside a plasma of cleaning gas without a disk present inside the chamber.
Abstract:
An arrangement for supporting substrates during processing, having a wafer carrier with a susceptor for supporting the substrate and confining the substrate to predetermined position. An inner mask is configured for placing on top of the substrate, the inner mask having an opening pattern to mask unprocessed parts of the substrate, but expose remaining parts of the substrate for processing. An outer mask is configured for placing on top of the inner mask, the outer mask having an opening that exposes the part of the inner mask having the opening pattern, but cover the periphery of the inner mask.
Abstract:
A glass cover for electronic devices, the glass cover having a first coating formed directly over and in contact with the front surface of the glass (where front means the surface facing the user), the first coating is textured, and a second coating is provided over the first coating, the second coating being resistance to scratching, e.g., a DLC coating. The first coating may be made of, e.g., silicon-oxide, silicon-nitride, or silicon oxy-nitride.
Abstract:
A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers. Cooling channels in the processing chucks are used to create air cushion to assist in aligning the wafers when delivered by the pickup head.
Abstract:
A system for depositing material from a target onto substrates, comprising a processing chamber; a sputtering target having length L and having highly magnetic sputtering material provided on front surface thereof a magnet assembly operable to reciprocally scan across the length L in close proximity to rear surface of the target and the magnet assembly comprises: a back plate made of magnetic material; a first group of magnets arranged in a single line central to the back plate and having a first pole positioned to face the rear surface of the target; and, a second group of magnets provided around periphery of the back plate so as to surround the first group of magnets, the second group of magnets having a second pole, opposite the first pole, positioned to face the rear surface of the target.
Abstract:
A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers. Cooling channels in the processing chucks are used to create air cushion to assist in aligning the wafers when delivered by the pickup head.
Abstract:
A system for transporting substrates from an atmospheric pressure to high vacuum pressure and comprising: a rough vacuum chamber having an entry valve and an exit opening; a high vacuum chamber having an entry opening, the high vacuum chamber coupled to the rough vacuum chamber such that the exit opening and the entry opening are aligned; a valve situated between the exit opening and the entry opening; a first conveyor belt provided in the rough vacuum chamber; a second conveyor provided in the high vacuum chamber; a sensing element provided in the high vacuum chamber to enable detection of broken substrates on the second conveyor; and, a mechanism provided on the second conveyor belt enabling dumping of broken substrates onto the bottom of the high vacuum chamber.
Abstract:
Disclosed is a substrate processing system which enables combined static and pass-by processing. Also, a system architecture is provided, which reduces footprint size. The system is constructed such that the substrates are processed therein vertically, and each chamber has a processing source attached to one sidewall thereof, wherein the other sidewall backs to a complementary processing chamber. The chamber system can be milled from a single block of metal, e.g., aluminum, wherein the block is milled from both sides, such that a wall remains and separates each two complementary processing chambers.
Abstract:
A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behinds the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. The movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone.