Abstract:
A method for generating a positive temperature correlated clock frequency is described. The method comprises conducting current through a resistor to charge a capacitor. When the capacitor is charged to a trip point of the inverter at the input of the inverter chain, a transition in an output signal of an inverter chain is triggered. The capacitor is discharged through a grounding device when the output signal activates said grounding device.
Abstract:
Region based admission and eviction control can be used for managing resources (e.g., caching resources) shared by competing workloads with different SLOs in hybrid aggregates. A “region” or “phase” refers to different incoming loads of a workload (e.g., different working set sizes, different intensities of the workload, etc.). These regions can be identified and then utilized along with other factors (e.g., incoming loads of other workloads, maximum cache allocation size, service level objectives, and others factors/parameters) in managing cache storage resources.
Abstract:
Examples are disclosed for adaptive configuration of non-volatile memory. The examples include a mode register configured to include default and updated values to indicate one or more configurations of the non-volatile memory. The examples may also include discoverable capabilities maintained in a configuration table that may indicate memory address lengths and/or operating power states.
Abstract:
A nonvolatile storage or memory device is accessed over a memory bus. The memory bus has an electrical interface typically used for volatile memory devices. A controller coupled to the bus sends synchronous data access commands to the nonvolatile memory device, and reads the response from the device bus based on an expected timing of a reply from the nonvolatile memory device. The controller determines the expected timing based on when the command was sent, and characteristics of the nonvolatile memory device. The controller may not need all the electrical signal lines available on the memory bus, and could issue data access commands to different groups of nonvolatile memory devices over different groups of electrical signal lines. The memory bus may be available and configured for either use with a memory controller and volatile memory devices, or a storage controller and nonvolatile memory devices.
Abstract:
Among other things, one or more techniques and/or systems are provided for storing data within a hybrid storage aggregate comprising a lower-latency storage tier and a higher-latency storage tier. In particular, frequently accessed data, randomly accessed data, and/or short lived data may be stored (e.g., read caching and/or write caching) within the lower-latency storage tier. Infrequently accessed data and/or sequentially accessed data may be stored within the higher-latency storage tier. Because the hybrid storage aggregate may comprise a single logical container derived from the higher-latency storage tier and the lower-latency storage tier, additional storage and/or file system functionality may be implemented across the storage tiers. For example, deduplication functionality, caching functionality, backup/restore functionality, and/or other functionality may be provided through a single file system (or other type of arrangement) and/or a cache map implemented within the hybrid storage aggregate.
Abstract:
Uncorrectable memory errors may be reduced by determining a logical array address for a set of memory arrays and transforming the logical array address to at least two unique array addresses based, at least in part, on logical locations of at least two memory arrays within the set of memory arrays. The at least two memory arrays are then accessed using the at least two unique array addresses, respectively.
Abstract:
A nonvolatile storage or memory device is accessed over a memory bus. The memory bus has an electrical interface typically used for volatile memory devices. A controller coupled to the bus sends synchronous data access commands to the nonvolatile memory device, and reads the response from the device bus based on an expected timing of a reply from the nonvolatile memory device. The controller determines the expected timing based on when the command was sent, and characteristics of the nonvolatile memory device. The controller may not need all the electrical signal lines available on the memory bus, and could issue data access commands to different groups of nonvolatile memory devices over different groups of electrical signal lines. The memory bus may be available and configured for either use with a memory controller and volatile memory devices, or a storage controller and nonvolatile memory devices.
Abstract:
Methods and apparatuses for operating a hybrid storage aggregate are provided. In one example, such a method includes operating a first tier of physical storage of the hybrid storage aggregate as a cache for a second tier of physical storage of the hybrid storage aggregate. The first tier of physical storage includes a plurality of assigned blocks. The method also includes updating metadata of the assigned blocks in response to an event associated with at least one of the assigned blocks. The metadata includes block usage information tracking more than two possible usage states per assigned block. The method can further include processing the metadata to determine a caching characteristic of the assigned blocks.
Abstract:
Disclosed are an approach form managing and assigning addresses in a connectivity platform that allows for proprietary connectivity modules (Providers) to plug into the operating system. In this disclosure, when a user/application/computing device, connects to another user on another computing device an address is generated for that user. However, because of a limited number of addresses that are available in an address space, it is necessary to ensure that a conflicting address is not present. To ensure this the connectivity platform determines if the address assigned is in conflict with another address associated with users that are located on the other computing devices. If an address is found to be in conflict the connectivity platform reassigns the address until a non-conflicting address is found. If a non-conflicting address cannot be found the connectivity platform blocks the connection between the user and the other user.
Abstract:
A nonvolatile storage or memory device is accessed over a memory bus. The memory bus has an electrical interface typically used for volatile memory devices. A controller coupled to the bus sends synchronous data access commands to the nonvolatile memory device, and reads the response from the device bus based on an expected timing of a reply from the nonvolatile memory device. The controller determines the expected timing based on when the command was sent, and characteristics of the nonvolatile memory device. The controller may not need all the electrical signal lines available on the memory bus, and could issue data access commands to different groups of nonvolatile memory devices over different groups of electrical signal lines. The memory bus may be available and configured for either use with a memory controller and volatile memory devices, or a storage controller and nonvolatile memory devices.