Abstract:
Water soluble macromers are modified by addition of free radical polymerizable groups, such as those containing a carbon-carbon double or triple bond, which can be polymerized under mild conditions to encapsulate tissues, cells, or biologically active materials. The polymeric materials are particularly useful as tissue adhesives, coatings for tissue lumens including blood vessels, coatings for cells such as islets of Langerhans, and coatings, plugs, supports or substrates for contact with biological materials such as the body, and as drug delivery devices for biologically active molecules. A medical condition at a localized site is treated by applying a polymerization initiator and then applying a substantially water-soluble, degradable macromer of at least 200 mw and having at least two crosslinkable substituents, and polymerizing the macromer to form a crosslinked polymeric material at the site. The crosslinked polymeric material may adhere two surfaces together, or be a barrier that provides immunoisolation or prevents adhesion of the site to another surface such as post-surgical adhesion. A biologically active material may be present when the macromer is polymerized to provide for delivery of the biologically active material, or to provide the polymeric material with a desired property such as resistance to bacterial growth or a decrease in inflammatory response.
Abstract:
Pro-healing agent formulation compositions, methods and treatments for enhancing vascular healing are disclosed herein. In some embodiments, a pro-healing agent is encapsulated, suspended, disposed within or loaded into a biodegradable carrier for sustained-release delivery to a denuded or damaged endothelium treatment area in a blood vessel. In some applications, the pro-healing agent can accelerate re-endothelialization of a denuded vascular region. In some applications, the pro-healing agent can assist in the regaining of endothelium functionality. The formulation can be delivered by a delivery assembly such as an infusion catheter, a porous balloon catheter, a needle injection catheter, a double balloon catheter or the like.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
A method including positioning a catheter at a location in a blood vessel; imaging a thickness of a portion of a wall of the blood vessel at the location; identifying a treatment site; advancing a needle a distance into the wall of the blood vessel to the treatment site; and introducing a treatment agent through the needle to the treatment site. A composition including an inflammation-inducing agent and a carrier in the form of microspheres having a particle size suitable for transvascular delivery. A composition including a therapeutic angiogenesis promoter in a carrier and an opsonin-inhibitor coupled to the carrier. An apparatus for delivery of a therapeutic angiogenesis promoter.
Abstract:
A stent of variable surface area as determined by stent struts. The stent can have a variable surface area per unit length which accommodates a therapeutic agent. A patterned distribution of therapeutic agent can be provided throughout the stent. The stent can have an increased level of therapeutic agent near an end of the stent. A decreased level of therapeutic agent can be provided near an end of one embodiment of a stent. Indentations can be provided at the surface of the stent with therapeutic agent disposed therein. The stent can be cut with struts of variable thickness to provide the variable stent surface area.
Abstract:
A drug delivery balloon is provided, the a balloon having an outer surface, and a tunable coating disposed on at least a length of the balloon surface. The tunable coating includes a first therapeutic agent and a first excipient, and can include a second therapeutic agent and a second excipient. The first and second therapeutic agents have different dissolution rates during balloon inflation and therefore provide a coating that is tunable.
Abstract:
A method of manufacturing a drug-delivery coating for a stent is disclosed. The method comprises covering the outer surface of the stent; applying a first composition to the inner surface of the stent to form a first coating; covering the first coating on the inner surface of the stent; and applying a second composition to the outer surface of the stent to form a second coating.
Abstract:
This invention relates to photodynamic therapy (PDT), more specifically PDT for atherosclerotic plaque via delivering PDT-loaded nanoparticles such as liposomes, polymersomes, micelles and polymeric nanoparticles into the diseased vascular tissue. This invention provides method and formulations for delivering multiple drugs and delivering drugs to specific targeted site.
Abstract:
A stent of variable surface area as determined by stent struts. The stent can have a variable surface area per unit length which accommodates a therapeutic agent. A patterned distribution of therapeutic agent can be provided throughout the stent. The stent can have an increased level of therapeutic agent near an end of the stent. A decreased level of therapeutic agent can be provided near an end of one embodiment of a stent. Indentations can be provided at the surface of the stent with therapeutic agent disposed therein. The stent can be cut with struts of variable thickness to provide the variable stent surface area.