摘要:
In order to tune an oscillation wavelength of a semiconductor laser diode to a target wavelength, the amount of change of a wavelength to the amount of change of a wavelength varying item is determined by actual measurement and a basic wavelength coefficient is renewed by using the ratio of both amounts of change as a corrective wavelength coefficient, and thus the characteristic when the wavelength of an actual device is made closer to a target wavelength is utilized.
摘要:
A source electrode, a gate electrode, and a drain electrode formed on a front face active region of a semiconductor substrate in a shape of teeth of a comb are covered with an insulating film such as polyimede etc., as well as all of the upper surface and the side surfaces of the insulating film are covered with a metal protective film. Via hole receiving pads connected to the source electrode, the gate electrode, and the drain electrode are respectively connected to bonding pads on a reveres face of the semiconductor substrate through via holes.
摘要:
An edge of a passivation film is positioned inside an edge of an overhanging emitter structure by a distance L so that a base electrode layer is formed at an interval not to overlap the edge of the passivation film even when the base electrode layer is formed by etching with the emitter structure as a mask.
摘要:
An n type InP buried layer 22 with Se or S added in an above 5null1018 cmnull3 concentration is formed on an active layer mesa stripe 18 having a surface with an SiO2 film 16 formed on at a peripheral part of the mesa stripe 18 other than the surface with the SiO2 film 16 formed on. Accordingly, the buried layer can be grown without the over growth.
摘要翻译:在具有表面的有源层台面条18上形成具有以5×10 18 cm -3以上添加的Se或S的n型InP掩埋层22,其中SiO 2膜16形成在台面条18的周边部分之外, 形成有SiO 2膜16的表面。 因此,埋层可以在没有过度生长的情况下生长。
摘要:
In the S3-type semiconductor laser, when an angle of a first growth profile line to the first principal plane, the first growth profile line connecting respective lower side lines of an upper inclined plane and a lower inclined plane of the first layer of the first conduction type cladding layer is null1, an angle of a second growth profile line to the first principal plane, the second growth profile line connecting respective lower side lines of an upper inclined plane and a lower inclined plane of the second layer of the first conduction type cladding layer is null2, an angle of a third growth profile line to the first principal plane, the third growth profile line connecting respective lower side lines of an upper inclined plane and a lower inclined plane of the third layer of the first conduction type cladding layer is null3, and an angle of a fourth growth profile line to the first principal plane, the fourth growth profile line connecting respective lower side lines of an upper inclined plane and a lower inclined plane of the fourth layer of the first conduction type cladding layer is null4, relationships null1 null3, null3
摘要:
A branching section provides a fundamental input wave signal SI of a frequency f to the gate of a FET 15A having a grounded source and the source of a FET 15B having an AC grounded gate, and a signal joining section synthesizes the output signals of the FETs 15A and 15B. An open stub 24 as an amplitude attenuating element is connected to a transmission line 19B of the signal joining section. The length of the open stub 24 is not an integral multiply of null/4, where null denotes the wavelength of the fundamental signal SI, and adjusted in simulation such that an amplitude difference between second harmonics included in the drain voltage signals SD1 and SD2 of the respective FETs 15A and 15B is reduced to almost zero. Although the open stub 24 itself is a phase compensating element, since the transfer characteristic of the FET 15B changes by connecting the open stub 24 to the transmission line 19B, the open stub 24 works as an amplitude attenuating element.
摘要:
A semiconductor integrated circuit device comprises an active device and a resistance element formed monolithically on a common substrate wherein the resistance element includes a dummy pattern having a layered structure identical with a layered structure of the active device, and first and second electrodes are provided inside a mesa structure provided for the resistance element with a separation from a sidewall of the mesa structure, the first and second electrodes being formed in correspondence to openings formed in the dummy pattern.
摘要:
A fabricating process of a semiconductor device includes the steps of forming a first photoresist layer on a surface of a substrate so as to cover a gate electrode on the substrate, forming a second photoresist layer on the fist photoresist layer with an increased sensitivity, forming a third photoresist layer on the second photoresist layer with a reduced sensitivity, forming an opening in a photoresist structure thus formed of the first through third photoresist layers such that the opening exposes the gate electrode and such that the opening has a diameter that increases gradually from the first photoresist layer to the second photoresist layer. Further, a low-resistance metal layer is deposited on the photoresist structure including the opening, such that the metal layer forms a low-resistance electrode on the gate electrode.
摘要:
A semiconductor device includes an ohmic electrode and a Schottky electrode respectively carrying interconnection patterns with intervening adhesion layer and a diffusion barrier layer, wherein the Schottky electrode further includes a metal layer that prevents a reaction between the Schottky electrode and the diffusion barrier layer such that the metal layer is interposed between the top surface of the Schottky electrode and adhesion layer for increasing the distance between the diffusion barrier layer and the Schottky electrode.
摘要:
A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.