Abstract:
A fine channel device including a fine channel provided with at least two inlet ports for feeding fluid, inlet channels communicated with the inlet ports, a confluent portion communicated with the inlet channels, a branch portion communicated with the fine channel, from which at least two outlet channels are branched to feed predetermined amounts of fluid, and outlet ports communicated with the outlet channels. The fine channel is provided with a plurality of partition walls arranged along a boundary formed by at least two kinds of fluid fed from the inlet ports so as not to cause mutual contamination of fluid. Furthermore, the plurality of partition walls are spaced apart at intervals in a flowing direction of fluid.
Abstract:
Multiphasic reactions, especially those reactions using a phase transfer catalyst, are conducted in microchannel apparatus. Advantageously, these reactions can be conducted with two, planar microlayers of reactants in adjacent laminar flow streams. Microchannel apparatus and methods for conducting unit operations such as reactions and separations in microchannel apparatus is also described. Microchannel apparatus can provide advantages for controlling reactions and separating products, solvents or reactants in multiphase reactions.
Abstract:
Embodiments of a method for using a microreactor to produce biodiesel. For example, the method may comprise flowing a first fluid comprising an alcohol and a second fluid comprising an oil to the microreactor. Alcohols typically, but not necessarily, are lower aliphatic alcohols, including methanol, ethanol, amyl alcohol or combinations thereof. Biodiesel production can be under supercritical conditions, where such conditions typically are determined relative to the alcohol component. Suitable sources of oil products include soy, inedible tallow and grease, corn, edible tallow and lard, cotton, rapeseed, sunflower, canola, peanut, safflower, and combinations thereof. Catalysts can be used to facilitate biodiesel production, such as metal oxides, metal hydroxides, metal carbonates, alcoholic metal carbonates, alkoxides, mineral acids and enzymes. Oil conversion to biodiesel typically increases with increasing mean microreactor residence time. Certain embodiments of the present invention can include blending biodiesel produced by the method with petroleum-based products.
Abstract:
A microchannel apparatus comprising a conduit including a microchannel mixing section, a microchannel reaction section, a microchannel heat transfer section, and a separation section, where the microchannel mixing section includes direct injection inlets, where the microchannel mixing section is downstream from the reaction section, and where the separation section is downstream from the reaction section. Further exemplary embodiments are also disclosed.
Abstract:
A test unit for the study of catalysts in short contact time reactions between a catalyst and at least one reagent, with a down transported flow reactor (4), with a load inlet (13, 13a, 13b) and a discharge outlet (14) linked with an admission inlet (15) to an upper chamber (39) of a separator (5) internally divided into an upper chamber (39) and a lower chamber (41) by a porous element (40) that is permeable to gases and impermeable to solid particles of catalyst, and a first preheater (1) provided with an outlet (2, 2a) connected with the inlet (13, 13a, 13b) of the reactor (4) via a load duct (42) in such a way that arranged between the outlet (2, 2a) and the load inlet (13, 13a, 13b) are some obturator means (3, 3a) in which the catalyst is heated to a desired temperature before they are loaded into the reactor (4).
Abstract:
Multiphasic reactions, especially those reactions using a phase transfer catalyst, are conducted in microchannel apparatus. Advantageously, these reactions can be conducted with two, planar microlayers of reactants in adjacent laminar flow streams. Microchannel apparatus and methods for conducting unit operations such as reactions and separations in microchannel apparatus is also described. Microchannel apparatus can provide advantages for controlling reactions and separating products, solvents or reactants in multiphase reactions.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to perform a labeling operation on a sample.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to perform a labeling operation on a sample.
Abstract:
A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
Abstract:
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.