Abstract:
A transmission, by means of inserting an electric motor between a couple of clutch shafts of twin-clutch type automatic transmission and controlling the torque and speed of the electric motor, establishing a smooth and efficient gear shifting control as well as enable to realize a creep control, idling stop starting control, R-to-D, D-to-R selecting control. The pre-stage gear is released after the torque transfer is completed with the electric motor, and the clutch is exchanged after synchronizing the motor speed with the electric motor. As the friction control of the clutch is not performed, smooth gear shift work can be realized, and the same control scheme extends to creep control, idling stop starting control, R-to-D, D-to-R selecting control to be enabled, which leads to such an effect that the life is extended without the clutch being worn away, as well as the drivability can be increased remarkably. As a single transmission can realize multiple functions, there is such an effect that the overall cost can be reduced relatively.
Abstract:
A four-element, two-freedom-degree planetary gear mechanism is constructed by arraying four input/output elements of a sun gear S1, a ring gear R, a carrier C and a sun gear S2 in a alignment chart. One of the two elements R and C arrayed on the inner side is assigned to the input In from an engine whereas the other is assigned to the output Out to the drive shaft, and the two outer elements S1 and S2 are connected to motor-generators MGi and MGo, respectively. As a result, the torque for the motor-generators to bear can be made lower than the engine output, and the energy to pass through the motor-generators is made lower to improve the transmission efficiency of the drivetrain.
Abstract:
In a hybrid vehicle of the present invention, an engine EG is subjected to feedback control to attain a target revolving speed NE*. In the case of malfunction of an inverter P1 for a generator GN, operation of the inverter P1 is stopped. When the generator GN is driven to rotate at a predetermined rotational speed, a counter electromotive force arises in a multiphase phase coil of the generator GN. When a motor MG is connected to the generator GN as a loading, electric current runs via a protection diode of the inverter P1 to implement power generation by the generator GN. The electric power generated by the generator GN is directly consumed by the motor MG. This arrangement enables the quantity of power generation to balance the quantity of consumption. Here the revolving speed of the engine EG is varied according to the loading applied to the vehicle. The arrangement of the present invention thus enables the amount of electric power generated by one of the generator GN and the motor MG to balance the amount of electric power consumed by the other of the generator GN and the motor MG, thus attaining a drive of the hybrid vehicle without using a secondary battery.
Abstract:
A shift control device includes a controller and a differential mechanism including four rotating elements. Each of the elements is connected to an engine, two motor/generators and an output. The controller is programmed to calculate a target driving power; make a judgment as to whether the target driving power is less than or equal to a driving power wherein the engine is driven under optimum fuel efficiency; when the judgment shows that the target driving power is larger than the driving power, calculate an engine's speed and torque wherein the target driving power is realized such that the engine is driven for maximum load; and control the engine under the engine's speed and torque. Consequently, if the target driving power is above what the engine alone can provide under optimum fuel efficiency, it is possible to provide the target power without consuming an electric power of a battery.
Abstract:
In a hybrid vehicle of the present invention, an engine EG is subjected to feedback control to attain a target revolving speed NE*. In the case of malfunction of an inverter P1 for a generator GN, operation of the inverter P1 is stopped. When the generator GN is driven to rotate at a predetermined rotational speed, a counter electromotive force arises in a multiphase phase coil of the generator GN. When a motor MG is connected to the generator GN as a loading, electric current runs via a protection diode of the inverter P1 to implement power generation by the generator GN. The electric power generated by the generator GN is directly consumed by the motor MG. This arrangement enables the quantity of power generation to balance the quantity of consumption. Here the revolving speed of the engine EG is varied according to the loading applied to the vehicle. The arrangement of the present invention thus enables the amount of electric power generated by one of the generator GN and the motor MG to balance the amount of electric power consumed by the other of the generator GN and the motor MG, thus attaining a drive of the hybrid vehicle without using a secondary battery.
Abstract:
In a hybrid vehicle of the present invention, an engine EG is subjected to feedback control to attain a target revolving speed NE*. In the case of malfunction of an inverter P1 for a generator GN, operation of the inverter P1 is stopped. When the generator GN is driven to rotate at a predetermined rotational speed, a counter electromotive force arises in a multiphase phase coil of the generator GN. When a motor MG is connected to the generator GN as a loading, electric current runs via a protection diode of the inverter P1 to implement power generation by the generator GN. The electric power generated by the generator GN is directly consumed by the motor MG. This arrangement enables the quantity of power generation to balance the quantity of consumption. Here the revolving speed of the engine EG is varied according to the loading applied to the vehicle. The arrangement of the present invention thus enables the amount of electric power generated by one of the generator GN and the motor MG to balance the amount of electric power consumed by the other of the generator GN and the motor MG, thus attaining a drive of the hybrid vehicle without using a secondary battery.
Abstract:
A four-element, two-freedom-degree planetary gear mechanism is constructed by arraying four input/output elements of a sun gear S1, a ring gear R, a carrier C and a sun gear S2 in a alignment chart. One of the two elements R and C arrayed on the inner side is assigned to the input In from an engine whereas the other is assigned to the output Out to the drive shaft, and the two outer elements S1 and S2 are connected to motor-generators MGi and MGo, respectively. As a result, the torque for the motor-generators to bear can be made lower than the engine output, and the energy to pass through the motor-generators is made lower to improve the transmission efficiency of the drivetrain.
Abstract:
The invention concerns a drive system with a drive motor (1), especially the internal combustion engine of a motor vehicle, an electric machine (4), which provides additional driving action, and at least one short-duty battery (11), which furnishes at least some of the energy required during the driving action of the electric machine (4).
Abstract:
A hybrid drive system includes an internal combustion engine with an output shaft. An energy converter is connected to the output shaft via a coupling. The energy converter has first and second rotors which are rotatable at different speeds in relation to each other. At least one of the rotors is provided with one or more windings which are supplied with current from a current converter. The current converter is supplied with direct current from a direct current source. A transmission with variable gear ratio is coupled to one of the rotors. The transmission and the current converter cooperate via a control arrangement. The control arrangement comprises a control unit for controlling rotational speed and torque of the internal combustion engine and the energy converter.
Abstract:
A power output apparatus 20 includes a clutch motor, an assist motor, and a controller. The clutch motor and the assist motor are controlled by the controller to enable the power output from an engine to a crankshaft 56, and expressed as the product of its revolving speed and torque, to be converted to the power expressed as the product of a revolving speed and a torque of a drive shaft and to be output to the drive shaft. The engine can be driven at an arbitrary driving point defined by a revolving speed and a torque, as long as the energy or power output to the crankshaft is identical. A desired driving point that attains the highest possible efficiency with respect to each amount of output energy is determined in advance. In order to allow the engine to be driven at the desired driving point, the controller controls the clutch motor and the assist motor as well as the fuel injection and the throttle valve position. Such control procedures of the power output apparatus enhance the energy efficiency of the whole power output apparatus.