摘要:
Provided herein are a thermoelectric material and a method for preparing the same, wherein the thermoelectric material has excellent thermoelectric performance and high mechanical properties (in particular, fracture toughness), and thus, when the thermoelectric material is applied to a thermoelectric module, the thermoelectric module has excellent performance and efficiency and a long lifespan.
摘要:
A tool to differentially compress a powder material comprises a differential compression piston and a support. The piston comprises a first part configured to apply a pressure on a first region of an external surface of the powder material. The piston comprises a second part with a recess which is located at a lateral distance from the first part and which is configured to face a second region of the external surface of the powder material. The tool further comprises a membrane that can be deformed by the piston. The deformable membrane is configured to at least partially retain the powder material in the tool.
摘要:
Brake disks with integrated heat sink are provided. Brake disk includes a fiber-reinforced composite material and an encapsulated heat sink material impregnated into the fiber-reinforced composite material. The encapsulated heat sink material comprises a heat sink material encapsulated within a silicon-containing encapsulation layer. Methods for manufacturing the brake disk with integrated heat sink and methods for producing the encapsulated heat sink material are also provided.
摘要:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
摘要:
To obtain a ceramic fiber-reinforced composite material, by melt-infiltrating a composite material substrate obtained by forming ceramic fibers into a composite with a matrix formed of an inorganic substance, with an alloy having a composition that is constituted by a disilicate of at least one or more transition metal among transition metals that belong to Group 3A, Group 4A or Group 5A of the Periodic Table and silicon as the remainder, and having the silicon content ratio of 66.7 at % or more.
摘要:
A dense composite material according to the present invention contains, in descending order of content, silicon carbide, titanium silicon carbide, and titanium carbide as three major constituents. The dense composite material contains 51% to 68% by mass of silicon carbide and no titanium silicide and has an open porosity of 1% or less. This dense composite material has properties such as an average linear thermal expansion coefficient of 5.4 to 6.0 ppm/K at 40° C. to 570° C., a thermal conductivity of 100 W/m·K or more, and a four-point bending strength of 300 MPa or more.
摘要:
Methods for preparing a silicon bonded PCD material involving a one step, double sweep process and drilling cutters made by such processes are disclosed. The PCD material includes thermally stable phases in the interstitial spaces between the sintered diamond grains. The method sweeps a diamond powder with a binder to form sintered PCD, reacts said molten binder with a temporary barrier separating said binder and said diamond from a silicon (Si) source, and sweeps said sintered PCD with said Si source to form SiC bonded PCD.
摘要:
A multi-layer rod shaped ceramic igniter includes an elongated tapered electrode having a central core of resistant material and two annular segments. One of the segments in on one side of the core and the other on an opposite side and connected to two slightly converging facets extending along the core. The multi-layered rod shaped ceramic igniters disclosed herein may be manufactured by slip-casting, injection molding or extruding a green annular body and removing material from opposite sides of the green body to form two almost parallel but slightly converging facets that extend over the heater igniter between the back surface and the tip of the igniter. After removing material between the annular segments the igniter is air dried and then heated in a vacuum at atmospheric pressure to approximately 900° C. in order to burn off the organic binder. The ceramic is then held in an inert atmosphere and heated to a temperature of 1600° C. and under an isotatic pressure of greater than 10 mega pascales for sintering the layer into a unitary monolithic structure.
摘要:
A dense composite material according to the present invention contains, in descending order of content, silicon carbide, titanium silicon carbide, and titanium carbide as three major constituents. The dense composite material contains 51% to 68% by mass of silicon carbide and no titanium silicide and has an open porosity of 1% or less. This dense composite material has properties such as an average linear thermal expansion coefficient of 5.4 to 6.0 ppm/K at 40° C. to 570° C., a thermal conductivity of 100 W/m·K or more, and a four-point bending strength of 300 MPa or more.
摘要:
The method of manufacturing the thermoelectric material including a plurality of phases that are phase-separated from a supersaturated solid solution includes: a process of performing a mechanical alloying treatment to a starting raw material that is prepared with a composition deviated from a composition range existing in an equilibrium state of a compound to generate the supersaturated solid solution; and a process of performing phase separation into the plurality of phases and solidification by heating and pressing the supersaturated solid solution, or by further performing a heat treatment according to the circumstances.