Abstract:
A cable 1 comprises a first thimble 2 and a second thimble 4, at least one yarn 6, and at least a first conductive fibre 8 for monitoring the cable 1. The yarn 6 extends from the first thimble 2 to the second thimble 4, turns around the second thimble 4, extends from the second thimble 4 to the first thimble 2, and turns around the first thimble 2. Each thimble holds a stack 9 of layers 10 of turns of the yarn 6. The first conductive fibre 8 is designed to signal the wear of the yarn 6 by breaking after a predetermined portion of the turns of the yarn 6 breaks. The first conductive fibre 8 is positioned at the first thimble 2 between the turns of the yarn 6 at less than 50% of the stack height h.
Abstract:
A cable 1 comprises a first thimble 2 and a second thimble 4, at least one yarn 6, and at least a first conductive fibre 8 for monitoring the cable 1. The yarn 6 extends from the first thimble 2 to the second thimble 4, turns around the second thimble 4, extends from the second thimble 4 to the first thimble 2, and turns around the first thimble 2. Each thimble holds a stack 9 of layers 10 of turns of the yarn 6. The first conductive fibre 8 is designed to signal the wear of the yarn 6 by breaking after a predetermined portion of the turns of the yarn 6 breaks. The first conductive fibre 8 is positioned at the first thimble 2 between the turns of the yarn 6 at less than 50% of the stack height h.
Abstract:
Process for continuous fabrication of highly aligned polymer films. A polymer-solvent solution is subjected to a high shear, high temperature, Couette flow to extrude a thin film having polymer chain disentanglement. The extruded thin film is frozen and the solvent is allowed to evaporate to form a dried film. The dried film is mechanically drawn using a constant force, adaptive-thickness drawing system to align polymer molecular chains through plastic deformation. A suitable polymer is ultra-high molecular weight polyethylene.
Abstract:
A composite cable or rope is described. The cable or rope has an inner metallic rope or core, consisting of a plurality of metal strands, and a plurality of covering layers formed around the inner metallic core. An innovative anchoring and safety system is also described. The system has one or more anchorages, fixed to the roof, in each of which the rope is stably locked by screwing, so as not to create instability problems for people attached to the rope.
Abstract:
In an elevator rope, a plurality of steel outer layer strands are twisted together on an outer circumference of an inner layer rope. The inner layer rope has: a fiber core; a plurality of steel inner layer strands that are twisted together directly onto an outer circumference of the fiber core; and a resin inner layer rope coating body that is coated onto the outer circumference. A diameter of the inner layer strands is smaller than a diameter of the outer layer strands. The inner layer strands are greater in number than the outer layer strands.
Abstract:
From a first aspect, a method is provided for forming a helix rope for a trawl comprising the steps of: a) situating upon a portion of a rope a bead of a substance being selected from a group consisting of: (i) a liquid substance; and (ii) a semi-liquid substance. From a second aspect, a helix rope (35) is provided for forming portions of a pelagic trawl, the helix rope comprising a braided sheath (398) formed of greater than sixteen strands (397), whereby drag is reduced. From a third aspect, a method is provided for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchoring lines, oil derrick anchoring lines, seismic lines, paravane lines, and any other uses for rope, cable or chain.
Abstract:
A rope of a lifting device, more particularly of a passenger transport elevator and/or freight transport elevator, an elevator, and a method for manufacturing the rope are disclosed. The rope includes an unbroken load-bearing part, the profile of which is essentially of rectangular shape, and the width of the cross-section is greater than the thickness and which load-bearing part comprises glass fiber reinforcements and/or aramid fiber reinforcements and/or carbon fiber reinforcements and/or polybenzoxazole fiber reinforcements and/or polyethylene fiber reinforcements and/or nylon fiber reinforcements in a polymer matrix material. The long sides of the cross-section of the load-bearing part include one or more grooves symmetrically or asymmetrically in the longitudinal direction of the rope, which grooves divide the load-bearing part into smaller parts.
Abstract:
A dragline excavator system has a support assembly, a hoist coupler assembly suspended from the support assembly, a bucket assembly suspended from the hoist coupler assembly, a sheave assembly supported by the hoist coupler assembly, a drag coupler assembly, and at least one dump rope operatively connected to the drag coupler assembly and the bucket assembly. The at least one dump rope extends through the sheave assembly. The at least one dump rope is formed of at least one fiber made from at least one of high modulus polyethylene (HMPE), poly-p-phenylenebenzobisoxazole (PBO), liquid crystal polymer (LCP), aromatic polyamide (Aramid), polyester, nylon, polyolefin, polypropylene (PP), carbon, and glass.
Abstract:
A high-strength cable having a twisted layer of non-metallic reinforcing elements in outer coatings is disclosed. The reinforcing elements include coating elements, fiber elements of copolyparaphenylene-3,4′-oxydiphenyleneterephthalic amide disposed in the coating elements, and filling materials filled between the fiber elements, respectively. The lateral compression stress of the fiber elements of the copolyparaphenylene-3,4′-oxydiphenyleneterephthalic amide is 75 cN/dtex or more.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles, a plurality of first yarns, and a plurality of second yarns. The rope subcomponents are combined to form the rope structure. The bundles are combined to form the rope subcomponents. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO and have a breaking elongation of approximately 2%-5%. The plurality of second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two and have a breaking elongation of approximately 2%-12%. The first and second yarns are combined to form the bundles.