Abstract:
A circuit includes: a first data line; a second data line; a write driver including first and second transistors; a first switch connected in series with the first transistor to form a first series-connected pair; a second switch in series with the second transistor to form a second series-connected pair; and a level shifter which includes the first and second transistors. The first series-connected pair is coupled between a first voltage node and the first data line. The second series-connected pair is coupled between the first voltage node and the second data line. Gate terminals of the first and second transistors are correspondingly cross-coupled with the second and first data lines.
Abstract:
A system includes a memory block. The memory block includes a local control circuit that is operable to control a memory operation of the memory block. The local control circuit includes a local sense amplifier. The system also includes a global memory control circuit separate from the memory block, and the global memory control circuit is operable to communicate with the local control circuit. The global memory control circuit includes a global data latch operable to receive a sensed data state from the local sense amplifier.
Abstract:
A memory array structure includes: a plurality of array sections and a plurality of mini-gaps, wherein each mini-gap is disposed between two array sections of the plurality of array sections. Each mini-gap includes: a local write device, for providing a data signal in response to a write enable signal and a write data signal, the data signal for performing a write operation on a memory cell of an array section; and a local sensor, for outputting a data signal in response to an activation command and a read enable signal. The memory array further includes a control logic for providing the write enable and read enable signals, and at least one main sense amplifier, for providing the write data signal to the local write device, receiving the data signal from the local sensor, and amplifying the received data signal for providing a read data signal to output data lines.
Abstract:
An integrated circuit system, and a method of manufacture thereof, including: an integrated circuit die; a non-volatile memory cell in the integrated circuit die and having a bit line for reading a data condition state of the non-volatile memory cell; and a voltage clamp in the integrated circuit die, the voltage clamp having a semiconductor switch connected to the bit line for reducing voltage excursions on the bit line.
Abstract:
An apparatus and method of three dimensional conductive lines comprising a first memory column segment in a first tier, a second memory column segment in a second tier, and conductive lines connecting the first memory column segment to the second memory column segment. In some embodiments a conductive line is disposed in the first tier on a first side of the memory column and in the second tier on a second side of the memory column.
Abstract:
A memory device includes: a plurality of conductive stacked structures including at least a string select line, a plurality of word lines and at least a ground select line; a plurality of memory cells formed in the conductive stacked structures; a plurality of bit lines, formed on the conductive stacked structures; and at least an odd common source line and at least an even common source line, formed on the conductive stacked structures. The odd common source line is coupled to a plurality of odd bit lines of the bit lines. The even common source line is coupled to a plurality of even bit lines of the bit lines.
Abstract:
A computer architecture employs multiple intercommunicating tiles each holding an array of memory elements. Programmable decoding circuitry allows these memory elements to be used as local memories (including content addressable memories or random access memories), logic elements or interconnect elements. The ability to dynamically change the function of any of these tiles allows tight integration of memory and logic tailored to particular calculation problems reducing costs in data transfer.
Abstract:
A circuit includes a first data line, a second data line, a first pulling device, a second pulling device, a third pulling device, and a fourth pulling device. The first pulling device is configured to be activated or deactivated responsive to a first control signal; and is configured to pull a first signal at the first data line toward a voltage level of a first voltage based on a second signal at the second data line when the first pulling device is activated. The second pulling device is configured to be activated or deactivated responsive to a second control signal; and is configured to pull the second signal at the second data line toward the voltage level of the first voltage based on the first signal at the first data line when the second pulling device is activated.
Abstract:
A semiconductor memory device is provided including a plurality of diffusion region pairs comprising first and second diffusion regions, wherein each of the diffusion regions comprise source and drain regions of a bit line transistor pair comprising a first bit line transistor and a second bit line transistor and a plurality of bit line transistor gate pairs in contact with the respective diffusion region pairs, wherein the first bit line transistor gate of the bit line transistor gate pairs comprises a gate portion of a first bit line transistor of the first diffusion region and the first bit lite transistor of the second diffusion region, wherein a second bit line transistor gate of the bit line transistor gate pairs comprises a gate portion of the second bit line transistor of the first diffusion region and the second bit line transistor of the second diffusion layer.
Abstract:
A method in a computer-aided design system for generating a functional design model of a static random access memory is described herein. The method comprises generating a functional representation of a first local evaluation logic coupled to a first set of consecutive global bit lines (GBLs) and a first set of local bit lines (LBLs), the first local evaluation logic comprising a plurality of devices. The method further comprises generating a functional representation of a second local evaluation logic communicatively coupled to the first local evaluation logic via the devices; the second local evaluation logic is coupled to a second set of consecutive GBLs and a second set of LBLs. In addition, the second set of consecutive GBLs consecutive to the first set of consecutive GBLs, the first and second evaluation logics to generate signals from the LBLs such that one GBL is to be active at any point in a read or write cycle and the other GBLs are not concurrently active.