Abstract:
In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
Abstract:
A magnetoresistive memory array including a plurality of magnetoresistive memory elements wherein each magnetoresistive memory element comprises a free layer including at least one ferromagnetic layer having perpendicular magnetic anisotropy, a fixed layer, and a tunnel barrier, disposed between and in contact with the free and fixed layers. The tunnel barrier includes a first metal-oxide layer, having a thickness between 1 and 10 Angstroms, a second metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed on the first metal-oxide layer, and a third metal-oxide layer, having a thickness between 3 and 6 Angstroms, disposed over the second metal-oxide layer. In one embodiment, the third metal-oxide layer is in contact with the free layer or fixed layer. The tunnel barrier may also include a fourth metal-oxide layer, having a thickness between 1 and 10 Angstroms, disposed between the second and third metal-oxide layers.
Abstract:
In some examples, a nonvolatile storage element may be configured to store a state or value during a low power or powered down period of a circuit. For example, the nonvolatile storage element may include a bridge of resistive elements that have a resistive state that may be configured by applying voltages to multiple drive paths. A sense amplifier may be connected to the bridge in order to resolve a voltage differential associated with the bridge to ether power or ground and, thereby determine the state associated with on the nonvolatile storage element.
Abstract:
An MRAM bit includes a free magnetic region, a fixed magnetic region comprising an anti-ferromagnetic material, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, wherein the one or more ferromagnetic materials includes cobalt, (ii) a second layer of one or more ferromagnetic materials wherein the one or more ferromagnetic materials includes cobalt, (iii) a third layer of one or more ferromagnetic materials, and an anti-ferromagnetic coupling layer, wherein: (a) the anti-ferromagnetic coupling layer is disposed between the first and third layers, and (b) the second layer is disposed between the first layer and the anti-ferromagnetic coupling layer.
Abstract:
A method of applying a write current to a magnetic tunnel junction device minimizes sub-threshold leakage. NMOS- and PMOS-follower circuits are used in applying the write current, and bias signals for the follower circuits are isolated from global bias signals before the write current is applied.
Abstract:
A magnetoresistive memory element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer having perpendicular magnetic anisotropy, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. A first surface of the first dielectric is in contact with a first surface of the free magnetic layer. The magnetoresistive memory element further includes a second dielectric, having a first surface that is in contact with a second surface of the free magnetic layer, a conductor, including electrically conductive material, and an electrode, disposed between the second dielectric and the conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion including at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A spin-torque magnetoresistive memory includes array read circuits and array write circuits coupled to an array of magnetic bits. The array read circuits sample magnetic bits in the array, apply a write current pulse to the magnetic bits to set them to a first logic state, resample the magnetic bits, and comparing the results of sampling and resampling to determine the bit state for each magnetic bit. For each of the magnetic bits in the page having the second logic state, the array write circuits initiate a write-back, wherein the write-back includes applying a second write current pulse having opposite polarity in comparison with the first write current pulse to set the magnetic bit to the second state. A read or write operation may be received after initiation of the write-back where the write-back can be aborted for a portion of the bits in the case of a write operation. The write-back may be performed such that different portions of the magnetic bits are written back at different times, thereby staggering the write-back current pulses in time. An offset current may also be used during resampling.
Abstract:
A memory device is configured to identify a set of bit cells to be changed from a first state to a second state. In some examples, the memory device may apply a first voltage to the set of bit cells to change a least a first portion of the set of bit cells to the second state. In some cases, the memory device may also identify a second portion of the bit cells that remained in the first state following the application of the first voltage. In these cases, the memory device may apply a second voltage having a greater magnitude, duration, or both to the second portion of the set of bit cells in order to set the second portion of bit cells to the second state.
Abstract:
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on whether the majority of bits are set to a high state or a low state. For instance, the memory device may be configured to set each bit in the memory array to a low state when the data is read. The memory device may then be configured to store the data in the original state when a majority of the bits to be written to the array are in the low state and in the inverted state when the majority of the bits to be written to the array are in the high state.
Abstract:
In one aspect, the present inventions are directed to a magnetoresistive structure having a tunnel junction, and a process for manufacturing such a structure. The tunnel barrier may be formed between a free layer and a fixed layer in a plurality of repeating process of depositing a metal material and oxidizing at least a portion of the metal material. Where the tunnel barrier is formed by deposition of at least three metal materials interceded by an associated oxidization thereof, the oxidation dose associated with the second metal material may be greater than the oxidation doses associated with the first and third metal materials. In certain embodiments, the fixed layer may include a discontinuous layer of a metal, for example, Ta, in the fixed layer between two layers of a ferromagnetic material.