Methodology for determining electron beam penetration depth
    75.
    发明授权
    Methodology for determining electron beam penetration depth 失效
    确定电子束穿透深度的方法

    公开(公告)号:US07259381B2

    公开(公告)日:2007-08-21

    申请号:US11006305

    申请日:2004-12-06

    CPC classification number: H01J37/3174 B82Y10/00 B82Y40/00 H01J37/32935

    Abstract: The Grunn equation: Depth = 0.046 ⁢ ⁢ ( V acc ) n ρ is modified to accurately predict depth of electron beam penetration into a target material. A two-layer stack is formed comprising a thickness of the target material overlying a detection material exhibiting greater sensitivity to the electron beam than the target material. The target material is exposed to electron beam radiation of different energies, with the threshold energy resulting in a changed physical property of the detection material below a predetermined value marking a penetration depth corresponding to the target material thickness. Utilizing the threshold energy (Vacc), the target material thickness (Depth), and the known target material density (ρ), the numerical power “n” of the Grunn equation is calculated to fit experimental results. So modified, the Grunn equation accurately predicts the depth of penetration of electron beams of varying energies into the target material.

    Abstract translation: Grunn方程式: 深度 = 0.046 V acc 修改为准确预测电子束穿透深度的 n rho 成为目标材料。 形成两层叠层,其包含覆盖在比目标材料更大的对电子束敏感性的检测材料上的目标材料的厚度。 目标材料暴露于不​​同能量的电子束辐射,其中阈值能量导致检测材料的物理性质改变低于标记对应于目标材料厚度的穿透深度的预定值。 利用阈值能量(Vacc),目标材料厚度(Depth)和已知目标材料密度(rho),计算Grunn方程的数值“n”以适应实验结果。 如此修改,Grunn方程准确地预测了不同能量的电子束穿透到目标材料中的深度。

      Non-intrusive plasma monitoring system for arc detection and prevention for blanket CVD films
      76.
      发明申请
      Non-intrusive plasma monitoring system for arc detection and prevention for blanket CVD films 审中-公开
      用于毯式CVD膜的电弧检测和防止的非侵入式等离子体监测系统

      公开(公告)号:US20070042131A1

      公开(公告)日:2007-02-22

      申请号:US11208835

      申请日:2005-08-22

      CPC classification number: H01J37/32935

      Abstract: Methods and systems of diagnosing an arcing problem in a semiconductor wafer processing chamber are described. The methods may include coupling a voltage probe to a process-gas distribution faceplate in the processing chamber, and activating an RF power source to generate a plasma between the faceplate and a substrate wafer. The methods may also include measuring the DC bias voltage of the faceplate as a function of time during the activation of the RF power source, where a spike in the measured voltage at the faceplate indicates an arcing event has occurred in the processing chamber. Methods and systems to reduce arcing in a semiconductor wafer processing chamber are also described.

      Abstract translation: 描述了在半导体晶片处理室中诊断电弧问题的方法和系统。 所述方法可以包括将电压探针耦合到处理室中的处理气体分布面板,以及激活RF功率源以在面板和衬底晶片之间产生等离子体。 所述方法还可以包括在激活RF功率源期间测量面板的DC偏置电压作为时间的函数,其中面板中测量的电压的尖峰表示在处理室中发生了电弧事件。 还描述了用于减少半导体晶片处理室中的电弧的方法和系统。

      High efficiency UV curing system
      78.
      发明申请
      High efficiency UV curing system 审中-公开
      高效UV固化系统

      公开(公告)号:US20060249175A1

      公开(公告)日:2006-11-09

      申请号:US11230975

      申请日:2005-09-20

      CPC classification number: B08B7/0035 C23C16/4405

      Abstract: An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV bulbs per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV bulbs can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical/ozone generated remotely and/or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and/or position can enhance uniformity of substrate illumination.

      Abstract translation: 紫外线(UV)固化室可固化设置在基底上的电介质材料并进行原位清洁。 串联处理室提供由覆盖有盖的主体限定的两个单独的和相邻的过程区域,所述盖子具有分别位于每个处理区域上方的窗口。 每个处理区域的一个或多个UV灯泡被耦合到盖的壳体覆盖,将通过窗口的UV光发射到位于处理区域内的衬底上。 UV灯泡可以是利用诸如微波或射频的源的发光二极管或灯泡阵列。 紫外光可以在固化过程中被脉冲。 使用远程生成的氧自由基/臭氧和/或原位实现清洁室。 灯阵列的使用,基板和灯头的相对运动以及灯反射器形状和/或位置的实时修改可以增强基板照明的均匀性。

      Method of forming a phosphorus doped optical core using a PECVD process
      80.
      发明授权
      Method of forming a phosphorus doped optical core using a PECVD process 失效
      使用PECVD工艺形成掺磷光纤芯的方法

      公开(公告)号:US07080528B2

      公开(公告)日:2006-07-25

      申请号:US10279366

      申请日:2002-10-23

      Abstract: Embodiments of the present invention provide a highly uniform low cost production worthy solution for manufacturing low propagation loss optical waveguides on a substrate. In one embodiment, the present invention provides a method of forming a PSG optical waveguide on an undercladding layer of a substrate that includes forming at least one silicate glass optical core on said undercladding layer using a plasma enhanced chemical vapor deposition process including a silicon source gas, an oxygen source gas, and a phosphorus source gas, wherein the oxygen source gas and silicon source gas have a ratio of oxygen atoms to silicon atoms greater than 20:1.

      Abstract translation: 本发明的实施例提供了用于在衬底上制造低传播损耗光波导的高度均匀的低成本生产有价值的解决方案。 在一个实施例中,本发明提供了一种在衬底的下包层上形成PSG光波导的方法,该方法包括使用包括硅源气体的等离子体增强化学气相沉积工艺在所述下封层上形成至少一个硅酸盐玻璃光学芯 氧源气体和磷源气体,其中氧源气体和硅源气体的氧原子与硅原子的比例大于20:1。

    Patent Agency Ranking