Abstract:
Methods, a Base Station (BS), and a User Equipment (UE) in a wireless communication system for transmitting and receiving a signal are provided. The method for transmitting a signal by a first BS in a wireless communication system includes receiving control information including information related to transmission of a Reference Signal (RS) by one or more second BSs, from the one or more second BSs which are neighboring BSs of the first BS, and transmitting signals to a UE based on information as to a second resource identified in the received control information, wherein the second resource corresponds to an identical resource to that used by the one or more second BSs for transmitting the RS.
Abstract:
Disclosed herein is an inertial sensor of the present invention. An inertial sensor 100 according to a preferred embodiment of the present invention includes a plate-shaped membrane 110, a mass body 120 disposed under a central portion 113 of the membrane 110, a post 130 disposed under an edge 115 of the membrane 110 and surrounding the mass body 120, a piezoelectric material 140 formed above the membrane 110 and provided with a cavity 141 in a thickness direction, a sensing electrode 150 disposed in the cavity 141 and a driving electrode 160 disposed outside the cavity 141, whereby the thickness of the piezoelectric material 140 of the portion on which the sensing electrode 150 is disposed is formed to be thin, such that the sensitivity of the inertial sensor 100 can be improved.
Abstract:
Disclosed herein is an inertial sensor including: a membrane; a mass body provided under the membrane; a plurality of patterned magnets provided under the mass body; and a magnetoresistive element provided to be spaced apart from the mass body and measuring static DC acceleration acting on the mass body through resistance changed according to magnetic fields of the plurality of patterned magnets. The plurality of patterned magnets and the magnetoresistive element are included, thereby making it possible to measure static DC acceleration (particularly, gravity acceleration) that is difficult to measure using an existing to piezoelectric element.
Abstract:
There is provided a method for performing digital processing on an image signal output from CCD image sensors with a CMYG color filter array, the method including converting a digital CMYG signal of 10 bits each into a first YCbCr signal of 10 bits each, by using color interpolation, converting the first YCbCr signal of 10 bits each into an RGB signal of 8 bits each by using interpolation, performing color correction on the RGB signal of 8 bits each and converting a color-corrected RGB signal of 8 bits each into a second YCbCr signal of 8 bits each in a format which complies with the ITU-601 format, encoding the second YCbCr signal of 8 bits each and converting an encoded second YCbr signal of 8 bits each into an analog video signal, and adjusting automatic exposure and automatic white balance, using the RGB signal of 8 bits each and the second YCbCr signal of 8 bits each.
Abstract:
Disclosed herein is a driving control module for an inertial force. The driving control module includes a timing control unit that applies a driving signal and a sensing signal; a driving unit that receives the driving signal from the timing control unit and applies the driving signal to a sensor; a sensing unit that receives the sensing signal from the timing control unit, applies the sensing signal to a sensor, and senses stabilization driving and inertial force of the sensor; and a driving control unit that locks application of the driving signal from the timing control unit to the driving unit. As a result, the exemplary embodiment of the present invention can provide a driving control module and a method for an inertial sensor capable of obtaining a maximum sampling rate by sensing the stabilization driving of the driving unit and locking and sensing the application of the driving signal from the timing control unit at the time of the stabilization driving and capable of performing an efficient control by reducing the additional driving for stable sensing and the sensing loss.
Abstract:
There is provided a bump structure for a semiconductor device, comprising a metal post formed on and electrically connected to an electrode pad on a substrate, a solder post formed on the top surface of the metal post, said solder post having the same horizontal width as the metal post and the top surface of the solder post being substantially rounded, and an intermetallic compound layer disposed at the interface between the metal post and the solder post. An oxide layer formed on the solder post prevents solder post under reflow from being changed into a spherical shape. An intermetallic compound layer may be formed by an aging process at the interface between the metal post and the solder post. The bump structure can realize fine pitch semiconductor package without a short between neighboring bumps.
Abstract:
The present invention enables a user to receive a financial service anywhere through a mobile terminal equipped with a UIM (User Identification Module) electronic card. In the present invention, a user enters his or her password to a mobile terminal with a UIM card including subscriber telephone number, finance, authorization, and personal information, then, if the entered password is correct, authorization is processed with a remote authorizing server based on the authorization information. After authorization, user's requesting service, e.g., payment service, transaction particulars inquiry service, prepaid card recharging service is conducted through a mobile network.
Abstract:
A method and apparatus for setting a TV operation environment for users submitting authorizing passwords. The method of setting a user environment of a television (TV) includes displaying a plurality of icons of Identifications (IDs) for respective users, each of the IDs corresponding to an operation environment for a user. If an ID icon is selected among the displayed icons, a password corresponding to the selected ID icon is authenticated, and if a user is authenticated by the password, a preset operation mode for the user is set.
Abstract:
Disclosed herein is a method of manufacturing an inertial sensor using a polling method of a piezoelectric element performing a polling after packaging the piezoelectric element, the method of manufacturing an inertial sensor including: forming a driving electrode and a sensing electrode on a flexible substrate on which a piezoelectric material is deposited; electrically connection the driving electrode and the sensing electrode; packaging the flexible substrate; polling by applying voltage and heat to the driving electrode and the sensing electrode; and electrically separating the driving electrode from the sensing electrode by applying heat to the driving electrode and the sensing electrode.
Abstract:
A method for manufacturing a printed circuit board with a capacitor embedded therein which has a dielectric film using laser lift off, and a capacitor manufactured thereby. In the method, a dielectric film is formed on a transparent substrate and heat-treated. A first conductive layer is formed on the heat-treated dielectric film. A laser beam is irradiated onto a stack formed, from below the transparent substrate, to separate the transparent substrate from the stack. After the transparent substrate is separated from the stack, a second conductive layer is formed with a predetermined pattern on the dielectric film. Also, an insulating layer and a third conductive layer are formed on the first and second conductive layers to alternate with each other in a predetermined number.