Abstract:
A field emission display includes electrostatic discharge protection circuits coupled to an emitter substrate and an extraction grid. In the preferred embodiment, the electrostatic discharge circuit includes diodes reverse biased between grid sections and a first reference potential or between row lines and a second reference potential. The diodes provide a current path to discharge static voltage and thereby prevent a high voltage differential from being maintained between the emitter sets and the extraction grids. The diodes thereby prevent the emitter sets from emitting electrons at a high rate that may damage or destroy the emitter sets. In one embodiment, the diodes are coupled directly between the grid sections and the row lines. In one embodiment, the diodes are formed in an insulative layer carrying the grid sections. In another embodiment, the diodes are integrated into the emitter substrate.
Abstract:
An anode of a flat panel display besides having a glass substrate, a patterned black grille on the substrate, a conductive layer covering the grille and the substrate, and a phosphor layer covering, also has one or more additional transparent layers that reduce the reflectance of the flat panel display from 14% down to 1%-4%. These additional layers are placed between the black matrix grille and the substrate, and between the conductive layer and phosphor layer. The two additional layers are selected and designed to reduce the reflectance that occurs at these respective interfaces.
Abstract:
A flat-panel field emission display comprises a luminescent faceplate, a rigid backplate, and an interposed or sandwiched emitter or cathode plate. A positioning spacer or connector ridge is formed on the rear surface of the faceplate to space the cathode plate a fixed distance behind the faceplate. A peripheral seal is formed between the faceplate and the backplate. The faceplate, backplate, and peripheral seal define an evacuated internal space which contains the cathode plate. The backplate is spaced behind the cathode plate to create a rearward vacuum space in which a getter is located.
Abstract:
A wire serves as a gettering material which is wire-bonded to electrical connections which lead outside of a vacuum sealed package. The wire can be activated to create and maintain a high integrity vacuum environment. The "getter" can be either heat activated or evaporated by the passing of an AC or DC current through the wire.
Abstract:
The disclosure describes a method of attaching and electrically connecting first and second planar substrates, wherein the first and second substrates have inwardly-facing surfaces with matching patterns of bond pads. The method includes adjusting a wire bonder's tear length to a setting which leaves a projecting tail of severed bond wire at a terminating wedge bond connection. Further steps include making a wedge bond to an individual bond pad of the first planar substrate with bond wire from the wire bonder, and then severing the bond wire adjacent said wedge bond. The adjusted tear length of the wire bonder results in a tail of severed bond wire which projects from said wedge bond and said individual bond pad. Subsequent steps include positioning the first and second planar substrates with their inwardly facing surfaces facing each other, aligning the matching bond pad patterns of the first and second planar substrates, and pressing the first and second planar substrates against each other. The bond wire tail deforms between the bond pads of the first and second planar substrates to conductively bond therebetween.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters, and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.
Abstract:
The process starts with a primary mask, which may be characterized as a pattern of parallel, photoresist strips having substantially vertical edges, each having a minimum feature width F, and being separated from neighboring strips by a minimum space width which is also approximately equal to F. From this primary mask, a set of expendable mandrel strips is created either directly or indirectly. The set of mandrel strips may be characterized as a pattern of parallel strips, each having a feature width of F/2, and with neighboring strips being spaced from one another by a space width equal to 3/2F. A conformal stringer layer is then deposited. The stringer layer material is selected such that it may be etched with a high degree of selectivity with regard to both the mandrel strips and an underlying layer which will ultimately be patterned using a resultant, reduced-pitch mask. The stringer layer is then anisotropically etched to the point where the top of each mandrel strip is exposed. The mandrel strips are then removed with an appropriate etch. A pattern of stringer strips remains which can then be used as a half-pitch mask to pattern the underlying layer. This process may also be repeated, starting with the half-pitch mask and creating a quarter-pitch mask, etc. As can be seen, this technique permits a reduction in the minimum pitch of the primary mask by a factor of 2.sup.-N (where N is an integer 1, 2, 3, . . . ).
Abstract:
A method of processing a semiconductor wafer includes: a) fabricating a wafer to define a plurality of conductive regions, the conductive regions having outer surfaces positioned at varying elevations on the wafer thereby defining at least one high elevation conductive region and at least one low elevation conductive region; b) providing a planarized insulating dielectric layer atop the wafer; c) patterning the insulating dielectric layer for defining a plurality of contact openings through the insulating dielectric to selected conductive regions at the varying elevations; d) first etching the plurality of contact openings into the patterned insulating layer downwardly to stop at the high elevation conductive region outer surface to which electrical contact is to be made; e) after first etching, selectively depositing a layer of an etch stop material to a selected thickness atop the outer surface of the high elevation conductive region; and f) second etching the plurality of contact openings into the patterned insulating material to the low elevation conductive region outer surface to which electrical contact is to be made using the selectively deposited etch stop material layer over the high elevation conductive region as an etch stop protecting layer during such second etching. Photoresist may or may not remain in place during the second etching depending on insulating dielectric layer thicknesses.
Abstract:
An interconnect lead (12) has trenches (28) that function as stress joints to inhibit the formation of stress related defects, such as cracks and hillocks. The interconnect lead is formed by a continuous layer (18) of a refractory metal alloy and a segmented layer (22) of an aluminum alloy. The stress joints are formed by using a high resolution microlithographic process (48) to etch the narrow trenches in a transverse direction to the length of the conductor through the aluminum layer.
Abstract:
A selective etching and chemical mechanical planarization process for the formation of self-aligned gate and focus ring structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a first conformal layer, iii) deposited with a conductive material layer, iv) deposited with a second conformal insulating layer, v) deposited with a focus electrode ring material layer, vi) optionally deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose a portion of the second conformal layer, viii) etched to form a self-aligned gate and focus ring, and thereby expose the emitter tip, afterwhich xi) the emitter tip may be coated with a low work function material.