摘要:
A method and structure for nitride based laser diode arrays on an insulating substrate is described. Various contact layouts are used to reduce electrical and thermal crosstalk between laser diodes in the array. A channel structure is used to make a surface emitting laser diode while maintaining a simple contact structure. Buried layers are used to provide a compact and low crosstalk contact structure for the laser diode array.
摘要:
The invention provides a laser structure that operates at a wavelength of 1.3 &mgr;m and at elevated temperatures and a method of making same. The laser structure includes a quantum well layer of InAsP. The quantum well layer is sandwiched between a first barrier layer and a second barrier layer. Each barrier layer exhibits a higher bandgap energy than the quantum well layer. Also, each barrier layer comprises Gax(AlIn)1−xP in which x 0. This material has a higher bandgap energy than conventional barrier layer materials, such as InGaP. The resulting larger conduction band discontinuity leads to improved high temperature performance without increasing the threshold current of the laser structure.
摘要:
An index-guided buried heterostructure AlGaInN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures.
摘要:
Polycrystalline group III-nitride semiconductor materials such as GaN and alloys of GaN and other group III-nitrides are deposited as layers on polycrystalline and non-crystalline substrates. The polycrystalline GaN layers can be formed by solid-phase crystallizing amorphous material or by directly depositing polycrystalline material on the substrates. The polycrystalline GaN material can be incorporated in light-emitting devices such as light-emitting diodes (LEDs). LED arrays can be formed on large-area substrates to provide large-area, full-color active-matrix displays.
摘要:
Group III-V nitride films are fabricated on mesas patterned either on substrates such as sapphire substrates, or on mesas patterned on group III-V nitride layers grown on substrates. The mesas provide reduced area surfaces for epitaxially growing group III-V nitride films, to reduce thermal film stresses in the films to reduce cracking. The surfaces of the mesas on which the films are grown are dimensioned and oriented to reduce the number of thin film crack planes that can grow on the mesas. Further cracking reduction in the films can be achieved by thinning the substrate to form membranes. The reduced substrate thickness at the membranes reduces the thermal expansion mismatch tensile stress in the films. The mesas can reduce or eliminate the occurrence of cracks in GaN or AlGaN epitaxial films grown on the mesas, for percentages of aluminum in the AlGaN films of up to about 18%. The improved group III-V nitride films can be used in optoelectronic devices including LEDs and edge and surface emitting laser diodes.
摘要:
A process for etching III-V nitride and III-V nitride alloy materials first implants selected regions of the materials with ions and then selectively etches the implanted regions in an etching liquid, such as an aqueous base. The etch depth is controlled by the energy, mass and dose of the implanted ions.
摘要:
An index-guided semiconductor laser diode made by impurity-induced layer disordering (IILD) of GaInP and AlGaInP heterostructures. In some embodiments, prior to the IILD, wing regions flanking an active mesa region are etched down close to the active layer so that the selective IILD involves a shallow diffusion only. High-performance, index-guided (AlGa).sub.0.5 In.sub.0.5 P lasers may be fabricated with this technique, analogous to those made in the AlGaAs material system. Also described are several techniques for reducing parasitic leakage current via the IILD regions, which include methods for providing p-n junctions or high band gap materials to reduce the parasitic leakage. In other embodiments, a planar structure is produced but with an ultra-thin upper cladding layer. Only a shallow IILD step is necessary to penetrate below the active region. Excessive out coupling and absorption losses are avoided by choosing materials that will minimize such losses, especially a pure gold metal coating as the p-contact metal.
摘要:
The present invention relates to a short-wavelength loss-guided structure using Group III-V nitride material. Specifically, waveguiding in the lateral direction is achieved by placing a high index material in close proximity to the active layer of the laser, which gives rise to outcoupling of light from the lateral waveguides. The present invention provides higher laser beam quality and simplifies the processing technology.
摘要:
A QW diode laser whose polarization can be switched. In one embodiment, the device incorporates a tensile strained quantum well active region, whose thickness is adjusted so that the heavy hole and light hole band edges are of the same energy. Since the heavy hole transition provides TE-mode gain, while the light hole band provides mostly TM-mode gain, the resulting laser polarization will be very sensitive to the threshold carrier density. With an intracavity loss modulator in such a structure, the polarization could be switched. Other switching techniques are also described.
摘要:
A method of regrowing material includes providing a III-nitride structure including a masking layer and patterning the masking layer to form an etch mask. The method also includes removing, using an in-situ etch, a portion of the III-nitride structure to expose a regrowth region and regrowing a III-nitride material in the regrowth region.