Abstract:
A pixel cell includes a latch having an input terminal and an output terminal. The latch is coupled to provide a latched output signal at the output terminal responsive to the input terminal. A first precharge circuit is coupled to precharge the input terminal of the latch to a first level during a reset of the pixel cell. A single photon avalanche photodiode (SPAD) is coupled to provide a SPAD signal to the input terminal of the latch in response to a detection of a photon incident on the SPAD.
Abstract:
A time of flight pixel cell includes a photosensor to sense photons reflected from an object. Pixel support circuitry including charging control logic is coupled to the photosensor to detect when the photosensor senses the photons reflected from the object, and coupled to receive timing signals representative of when light pulses are emitted from a light source. A controllable current source is coupled to receive a time of flight signal form the charging control logic to provide a charge current when a light pulse emitted from the light source until the photosensor senses a respective one of the photons reflected from the object. A capacitor is coupled to receive the charge current, and a voltage on the capacitor is representative of a round trip distance to the object. A reset circuit is coupled to reset the voltage on the capacitor after being charged a plurality number of times.
Abstract:
An imaging system includes a pixel array including a plurality of pixels. Each one of the pixels includes a single photon avalanche diode (SPAD) coupled to detect photons in response to incident light. A photon counter included in readout circuitry coupled to each pixel to count a number of photons detected by each pixel. The photon counter is coupled to stop counting photons in each pixel when a threshold photon count is reached for each pixel. Control circuitry is coupled to the pixel array to control operation of the pixel array. The control circuitry includes an exposure time counter coupled to count a number of exposure times elapsed before each pixel detects the threshold photon count. Respective exposure time counts and photon counts are combined for each pixel of the pixel array.
Abstract:
A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data.
Abstract:
A method of reading image data from an image sensor includes accumulating image charges in photosensitive elements of an array of pixel cells. The accumulated image charges are transferred to corresponding transistors in multi-phase transfer channels that are coupled to corresponding columns of the pixel array. Multi-phase transfer signals are generated. Each set of the multi-phase transfer signals includes a plurality of control signals that are out-of-phase with one another and are coupled to control respective transistors in the multi-phase transfer channels. The accumulated image charges from a first variable number of pixel cells of a selected column are output in response to the multi-phase transfer signals. The accumulated image charges from a second variable number of pixel cells of another selected column are output in response to the multi-phase transfer signals.
Abstract:
An integrated circuit system includes a first device wafer bonded to a second device wafer at a bonding interface of dielectrics. Each wafer includes a plurality of dies, where each die includes a device, a metal stack, and a seal ring that is formed at an edge region of the die. Seal rings included in dies of the second device wafer each include a first conductive path provided with metal formed in a first opening that extends from a backside of the second device wafer, through the second device wafer, and through the bonding interface to the seal ring of a corresponding die in the first device wafer.
Abstract:
A pixel circuit includes a first photodiode and a second photodiode. The first and second photodiodes photogenerate charge in response to incident light. A first transfer transistor is coupled to the first photodiode. A first floating diffusion is coupled to the first transfer transistor. A second transfer transistor is coupled to the second photodiode. A second floating diffusion is coupled to the second transfer transistor. A dual floating diffusion transistor is coupled between the first and second floating diffusions. An overflow transistor is coupled to the second photodiode. A capacitor is coupled between a voltage source and the overflow transistor. A capacitor readout transistor is coupled between the capacitor and the second floating diffusion. An anti-blooming transistor coupled between the first photodiode and a power line.
Abstract:
A pixel circuit includes a photodiode configured to photo generate image charge in response to incident light, a floating diffusion coupled to receive the image charge from the photodiode, a transfer transistor coupled between the photodiode and the floating diffusion to transfer the image charge from the photodiode to the floating diffusion, a reset transistor coupled between a variable voltage source and the floating diffusion, wherein the reset transistor is configured to be switched in response to a reset control signal, and a lateral overflow integration capacitor (LOFIC) coupled between the variable voltage source and the floating diffusion. The variable voltage source is configured to output a high-voltage level during a high conversion gain (HCG) reset signal readout and an HCG image signal readout, and a mid-voltage level during a LOFIC image signal readout and a LOFIC reset signal readout.
Abstract:
An optical sensor includes a pixel array of pixel cells. Each pixel cell includes photodiodes to photogenerate charge in response to incident light and a source follower to generate an image data signal in response to the charge photogenerated from the photodiodes. An image readout circuit is coupled to the pixel cells to read out the image data signal generated from the source follower of at least one of the pixel cells of a row of the pixel array. An event driven circuit is coupled to the pixel cells to read out the event data signals generated in response to the charge from the photodiodes of another row of the pixel cells of the pixel array. The image readout circuit is coupled to read out the image data signal and the event driven circuit is coupled to read out the event data signals from pixel array simultaneously.
Abstract:
A switch driver circuit includes a plurality of pullup transistors. The plurality of pullup transistors includes a first pullup transistor coupled between a voltage supply and a first output node. A plurality of pulldown transistors includes a first pulldown transistor coupled between the first output node and a ground node. A slope control circuit is coupled to the ground node. A plurality of global connection switches includes a first global connection switch coupled between the first output node and the slope control circuit.