摘要:
A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
摘要:
Provided are a SiGe vertical optical path and a method for selectively forming a SiGe optical path normal structure for IR photodetection. The method comprises: forming a Si substrate surface; forming a Si feature, normal with respect to the Si substrate surface, such as a trench, via, or pillar; and, selectively forming a SiGe optical path overlying the Si normal feature. In some aspects, the Si substrate surface is formed a first plane and the Si normal feature has walls (sidewalls), normal with respect to the Si substrate surface, and a surface in a second plane, parallel to the first plane. Then, selectively forming a SiGe optical path overlying the Si normal feature includes forming a SiGe vertical optical path overlying the normal feature walls.
摘要:
An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
摘要:
A method of fabricating a doped-PCMO thin film layer includes preparing a PCMO precursor solution having a transition metal additive therein; and spin-coating the doped-PCMO spin-coating solution onto a wafer.
摘要:
A method of etching a noble metal top electrode on a ferroelectric layer while preserving the ferroelectric properties of the ferroelectric layer and removing etching residue includes preparing a substrate; depositing a barrier layer on the substrate; depositing a bottom electrode layer on the barrier layer; depositing a ferroelectric layer on the bottom electrode layer; depositing a noble metal top electrode layer on the ferroelectric layer; depositing an adhesion layer on the top electrode layer; depositing a hard mask layer on the adhesion layer; patterning the hard mask; etching the noble metal top electrode layer in an initial etching step at a predetermined RF bias power, which produces etching residue; and over etching the noble metal top electrode layer and ferroelectric layer at an RF bias power lower than that of the predetermined RF bias power to remove etching residue from the initial etching step.
摘要:
An asymmetric-area memory cell, and a fabrication method for forming an asymmetric-area memory cell, are provided. The method comprises: forming a bottom electrode having an area; forming a CMR memory film overlying the bottom electrode, having an asymmetric area; and, forming a top electrode having an area, less than the bottom electrode area, overlying the CMR film. In one aspect, the CMR film has a first area adjacent the top electrode and a second area, greater than the first area, adjacent the bottom electrode. Typically, the CMR film first area is approximately equal to the top electrode area, although the CMR film second area may be less than the bottom electrode area.
摘要:
An asymmetric-area memory cell, and a fabrication method for forming an asymmetric-area memory cell, are provided. The method comprises: forming a bottom electrode having an area; forming a CMR memory film overlying the bottom electrode, having an asymmetric area; and, forming a top electrode having an area, less than the bottom electrode area, overlying the CMR film. In one aspect, the CMR film has a first area adjacent the top electrode and a second area, greater than the first area, adjacent the bottom electrode. Typically, the CMR film first area is approximately equal to the top electrode area, although the CMR film second area may be less than the bottom electrode area.
摘要:
A strained-silicon (Si) channel CMOS device shallow trench isolation (STI) oxide region, and method for forming same have been provided. The method comprises: forming a Si substrate; forming a relaxed-SiGe layer overlying the Si substrate, or a SiGe on insulator (SGOI) substrate with a buried oxide (BOX) layer; forming a strained-Si layer overlying the relaxed-SiGe layer; forming a silicon oxide layer overlying the strained-Si layer; forming a silicon nitride layer overlying the silicon oxide layer; etching the silicon nitride layer, the silicon oxide layer, the strained-Si layer, and the relaxed-SiGe layer, forming a STI trench with trench corners and a trench surface; forming a sacrificial oxide liner on the STI trench surface; in response to forming the sacrificial oxide liner, rounding and reducing stress at the STI trench corners; removing the sacrificial oxide liner; and, filling the STI trench with silicon oxide.
摘要:
Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions. The resistive cross-point memory device is formed by doping lines within a substrate one polarity, and then doping regions of the lines the opposite polarity to form diodes. Bottom electrodes are then formed over the diodes with a layer of resistive memory material overlying the bottom electrodes. Top electrodes may then be added at an angled to form a cross-point array defined by the lines and the top electrodes.
摘要:
A method of dry etching a PCMO stack, includes preparing a substrate; depositing a barrier layer; depositing a bottom electrode; depositing a PCMO thin film; depositing a top electrode; depositing a hard mask layer; applying photoresist and patterning; etching the hard mask layer; dry etching the top electrode; dry etching the PCMO layer in a multi-step etching process; dry etching the bottom electrode; and completing the PCMO-based device.