Abstract:
A method for producing a semiconductor laser comprising depositing a first semiconductor layer comprising n-type InP on an n-type InP substrate, depositing a diffraction grating of InGaAsP which includes or excludes doping impurities on the first semiconductor layer with irradiating interference fringes by a light excitation crystalline growth means, and burying a portion of the diffraction grating with InGaAsP including or excluding doping impurities with irradiating interference fringes reverse in light and darkness from said interference fringes used in depositing the diffraction grating.
Abstract:
A grating in the upper reflecting layer (103 or 203) of an antiresonant reflecting optical waveguide is used to extract energy of a selected wavelength from the waveguiding layer (102 or 202) into the reflecting layer. In one embodiment the reflecting layer (103) is designed as a gain medium which is pumped in the region of a grating (120) and optically terminated at each end of the device such that the embodiment serves as a laser having a long cavity provided by the waveguiding layer (102) with the gain provided in the short grating region. In a second embodiment the reflecting layer (203) in the region of a grating (211) has an opposite conductivity dopant from that of the waveguiding layer (202) such that the device in this region may be backbiased to serve as a wavelength selective photodetector. By placing two wavelength photodetectors in tandem with gratings (211 and 212)of different pitches a wavelength demultiplexing photodetector is provided.
Abstract:
Longitudinal mode control is achieved in a heterojunction semiconductor laser (201-208) by doping the active region (203) of the laser with a deep level electron or hole trap. The trap is chosen to have a carrier capture cross section .sigma..sub.e and an optical cross section .sigma..sub.o such that the ratio of P, the average number of photons per cubic centimeter, to P.sub.s is between 0.1 and 100 where P.sub.s is equal to (N.sigma..sub.e V/.sigma..sub.o C.sub.o), N is the carrier density, V is the carrier thermal velocity, and C.sub.o is the speed of light in the material. In a specific embodiment the active region is bombarded by photons to achieve deep level electron traps in the active region.
Abstract:
A non-etched gap is introduced along the length of an integrated Bragg grating with etched grooves such that the coupling coefficient, K, of the grating is reduced by the non-etched gap. In this way, multiple grating K values may be defined within a photonic integrated circuit using a single lithography and etch step. Additionally, the non-etched gap width may be varied along the length of a single grating to implement a chirped grating.
Abstract:
A structure of distributed feedback (DFB) laser includes a grating layer having a phase-shift grating structure and a gratingless area. In addition, both side-surfaces of the DFB laser are coated with anti-reflection coating to improve SMSR and to obtain good slope efficiency (SE). The grating layer is divided by the phase-shift grating structure in a horizontal direction into a first grating area and a second grating area adjacent to a laser-out surface of the DFB laser. The phase-shift grating structure provides a phase-difference distance, such that a shift of phase exists between the micro-grating structures located within the first grating area and the other micro-grating structures located within the second grating area. The gratingless area located within the second grating area contains no micro-grating structure, and moreover, the gratingless area will not change the phase of the micro-grating structures located within the second grating area.
Abstract:
Monolithic asymmetric optical waveguide grating resonators including an asymmetric resonant grating are disposed in a waveguide. A first grating strength is provided along a first grating length, and a second grating strength, higher than the first grating strength, is provided along a second grating length. In advantageous embodiments, the effective refractive index along first grating length is substantially matched to the effective refractive index along second grating length through proper design of waveguide and grating parameters. A well-matched effective index of refraction may permit the resonant grating to operate in a highly asymmetric single longitudinal mode (SLM). In further embodiments, an asymmetric monolithic DFB laser diode includes front and back grating sections having waveguide and grating parameters for highly asymmetric operation.
Abstract:
A combined Gain-SOA (Semiconductor Optical Amplifier) Chip is provided for forming a hybrid laser by a combination with an external reflector, the Gain-SOA Chip comprising a gain section and an SOA section, wherein an optical grating is arranged between the gain section and the SOA section.
Abstract:
A monolithic tunable mid-infrared laser has a wavelength range within the range of 3-14 μm and comprises a heterogeneous quantum cascade active region together with at least a first integrated grating. The heterogeneous quantum cascade active region comprises at least one stack, the stack comprising two, desirably at least three differing stages. Methods of operating and calibrating the laser are also disclosed.
Abstract:
A system and method generate laser pulses. Using the modulation signal from a pulse generation module, a seed laser diode generates seed light pulses in response to direct drive current modulation. The seed light pulses have a pulse duration longer than a target pulse duration and a spectral chirp. A compression module has dispersion characteristics over a broad spectral range. The pulse generation module is configured to adapt the modulation signal to tailor the spectral chirp of the seed light pulses in view of the dispersion characteristics of the compression module, such that propagation of the seed light pulses through the compression module compresses the seed pulses into output light pulses having the target pulse duration.
Abstract:
Semiconductor lasers comprise a substrate; an active layer configured to generate transverse magnetic (TM) polarized light under an electrical bias; an upper cladding layer; a lower cladding layer; and a distributed feedback (DFB) grating defined by the interface of a layer of metal and a layer of semiconductor under the layer of metal, the interface periodically corrugated in the longitudinal direction of the laser with a periodicity of ΛDFB=mλ/(2neff), wherein m>1. The DFB grating is configured such that loss of one or more antisymmetric longitudinal modes of the laser structure via absorption to the DFB grating is sufficiently maximized so as to produce lasing of a symmetric longitudinal mode of the laser with laser emission characterized by a single-lobe beam along each direction defined by the grating diffraction orders corresponding to emission away from the plane of the grating.