Abstract:
A printed wiring board includes a plurality of lands arranged in a mounting area allowing therein mounting of an electronic component; and an wiring respectively connected to a specific land which is at least one of the outermost lands arranged outermostly out of all lands, wherein a connection portion of the specific land and the wiring connected to the specific land is positioned inside a closed curve which collectively surrounds, by the shortest path, all of the outermost lands formed in the mounting area.
Abstract:
A connector for connecting a first printed circuit board with a second printed circuit board that comprises a first column of differential signal pair launches offset from a second column of differential signal pair launches on the first printed circuit board so that each differential signal pair in the first column is closest to a launch of a first polarity in a corresponding differential signal pair in the second column on the first circuit board, a first column of differential signal pair launches offset from a second column of differential signal pair launches on the second printed circuit board so that each differential signal pair in the first column is closest to a launch of a second polarity, opposite the first polarity, in a corresponding signal pair in the second column on the second circuit board, and a connector electrically connecting the first column of differential signal pair launches on the first printed circuit board to the first column of differential signal pair launches on the second printed circuit board and electrically connecting the second column of differential signal pair launches on the first printed circuit board to the second column of differential signal pair launches on the second printed circuit board.
Abstract:
Disclosed are methodologies for defining matched-impedance footprints on a substrate such as a printed circuit board, for example, that is adapted to receive an electrical component having an arrangement of terminal leads. Such a footprint may include an arrangement of electrically-conductive pads and an arrangement of electrically-conductive vias. The via arrangement may differ from the pad arrangement. The vias may be arranged to increase routing density, while limiting cross-talk and providing for matched impedance between the component and the substrate. The via arrangement may be altered to achieve a desired routing density on a layer of the board. Increasing the routing density may decrease the number of board layers, which tends to decrease capacitance and thereby increase impedance. Ground vias and signal vias may be arranged with respect to one another in such a manner as to affect impedance. Thus, the via arrangement may be altered to achieve an impedance that matches the impedance of the component. The via arrangement may be also be altered to limit cross-talk among neighboring signal conductors. Thus, the via arrangement may be defined to balance the impedance, cross-talk, and routing density requirements of the system.
Abstract:
An electronic system is provided including forming a substrate having a radiating patterned pad, mounting an electrical device having an external interconnect over the radiating patterned pad with the external interconnect offset from the radiating patterned pad, and aligning the external interconnect with the radiating patterned pad.
Abstract:
A circuit board has a curved portion provided in at least one side of an external shape thereof. An external connecting terminal is provided on a first main surface of the circuit board. A semiconductor element is mounted on a second main surface of the circuit board. A first wiring network is provided in a region except the terminal region on the first main surface. A second wiring network is provided on the second main surface. Distance from the side including the curved portion to the first wiring network is larger than distance from at least one of the other sides to the first wiring networks, and distance from the side including the curved portion to the second wiring network is larger than distance from at least one of the other sides to the second wiring networks.
Abstract:
A method for establishing a communication path between connectors on opposite sides of a PCB mounted to a vacuum chamber with an O-ring seal includes the steps (a) providing a plurality of vias through the PCB in the form of a connector pin pattern within the O-ring seal area to enable surface mounting of the type connector to the vacuum side of the PCB, (b) providing a plurality of vias through the PCB in the form of a pin pattern compatible to the pin pattern of step (a) outside of the O-ring seal area to enable plug in of the type connector to the pin pattern on the non-vacuum side of the PCB, and (c) on the non-vacuum side of the PCB, providing a conductive trace leading from each of the exposed vias of step (a) across the face of the PCB to each of the exposed vias of step (b).
Abstract:
A wiring board of the present invention (1) is arranged so that: pads (30) arranged in a plurality of rows include: first-row pads (30a) connected to first metal wires (10a) among metal wires (10); and second-row pads (30b) connected to second metal wires (10b) among the metal wires (10), the first metal wires (10a) being longer than the second metal wires (10b); and that each of the first connecting lines (10a) is formed so as to be separated from a corresponding one of the second-row pads (30b) by at least an insulating layer, and so as to extend not through a region between the corresponding second-row pad (30b) and a second-row pad (30b) adjacent to the corresponding second-row pad (30b), but through a region below the corresponding second-row pad (30b).
Abstract:
A printed circuit board includes a group of pads suitable to be soldered to a respective group of solder-balls of a device. Each pad of the group has a crack initiation point on its perimeter at a location where cracks in a solder-ball are anticipated to start after that solder-ball is soldered to that pad. For a pad of that group having a microvia located therein, a center of that microvia is located farther than a center of that pad from its crack initiation point. For a pad of that group having a trace merging along a portion of its perimeter, that portion does not include a vicinity of that crack initiation point.
Abstract:
An electronic circuit of at least one embodiment of the present invention includes: a plurality of electronic parts, of the plurality of electronic parts, at least one electronic part being at least one main part and the other electronic parts being auxiliary parts, the at least one main part being necessary for determination of whether or not the electronic circuit operates normally, the auxiliary parts being unnecessary for determination of whether or not the electronic circuit operates normally, the auxiliary parts being connected to a line which is connected to the at least one main part so as to supply a signal necessary for operation of the at least one main part or output a signal obtained by the operation of the at least one main part. This provides an electronic circuit which is capable of properly detecting a circuit wiring disconnection and easily detecting faulty wiring between elements without the need of providing the electronic circuit with more components for detecting a circuit wiring disconnection.
Abstract:
A probe core includes a frame, a wire guide connected to the frame, a probe tile, and a plurality of probe wires supported by the wire guide and probe tile. Each probe wire includes an end configured to probe a device, such as a semiconductor wafer. Each probe wire includes a signal transmitting portion and a guard portion. The probe core further includes a lock mechanism supported by the frame. The lock mechanism is configured to allow the probe core to be connected and disconnected to another test equipment or component, such as a circuit board. As one example, the probe core is configured to connect and disconnect from the test equipment or component in a rotatable lock and unlock operation or twist lock/unlock operation, where the frame is rotated relative to remainder of the core to lock/unlock the probe core.