摘要:
A method of forming a field effect transistor relative to a monocrystalline silicon substrate, where the transistor has an elevated source and an elevated drain, includes: a) providing a transistor gate over the monocrystalline silicon substrate, the gate being encapsulated in electrically insulative material; b) providing outer exposed monocrystalline silicon substrate surfaces adjacent the transistor gate; c) cleaning the outer exposed substrate surfaces to remove oxide and impurities therefrom; d) within a rapid thermal chemical vapor deposition reactor and after the cleaning step, chemical vapor depositing a conductively doped non-polycrystalline silicon layer over the cleaned substrate surfaces adjacent the transistor gate, the non-polycrystalline silicon layer having an outer surface, the substrate not being exposed to oxidizing or contaminating conditions between the time of cleaning and the chemical vapor depositing; and e) after chemical vapor depositing, exposing the doped non-polycrystalline silicon layer to high temperature annealing conditions effective to, i) produce doped monocrystalline silicon extending outwardly from the substrate surface, and ii) produce doped polycrystalline silicon extending inwardly from the outer surface; the doped monocrystalline silicon and doped polycrystalline silicon joining at an interface which is displaced elevationally outward of the substrate surfaces. A field effect transistor is also claimed.
摘要:
A high aspect ratio submicron VLSI contact and corresponding method of manufacture is disclosed. The contact is formed through an insulative layer, such as silicon dioxide, to an underlying active region on a substrate of silicon wafer. The contact comprises a layer of titanium germanosilicide at the bottom of the contact opening, and a layer of titanium germanide at the sides of the contact opening, with an overlying layer of titanium nitride. The contact is metallized, preferably using tungsten or aluminum. The disclosed method of manufacturing the contact comprises first etching the contact opening, then exposing the bottom of the contact opening to germane gas to clean native silicon dioxide from the bottom of the contact opening. A 50 Angstrom layer of germanium is then deposited over the contact opening. A layer of titanium is then deposited over the germanium layer in the contact opening. The deposition of titanium is preferably accomplished using a collimator having an aspect ratio lower than about 2.5:1. After annealing in a nitrogen atmosphere, the contact is metallized with tungsten or aluminum. The anneal step can be conducted at a temperature of around 600.degree. C. Less titanium may be used than with conventional processes, allowing a higher aspect ratio of the contact opening as well as the use of the collimator having a lower than conventional aspect ratio.
摘要:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).
摘要:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
摘要:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a first HOD layer on a first side of a first silicon substrate, forming a CMOS region on a second side of the silicon substrate, forming amorphous silicon on the CMOS region, recrystallizing the amorphous silicon to form a first single crystal silicon layer, and forming a second HOD layer on the first single crystal silicon layer.
摘要:
A process for depositing titanium metal layers via chemical vapor deposition is disclosed. The process provides deposited titanium layers having a high degree of conformality, even in trenches and contact openings having aspect ratios greater than 1:5.
摘要:
In one aspect, the invention includes a semiconductor processing method comprising exposing silicon, nitrogen and oxygen in gaseous form to a high density plasma during deposition of a silicon, nitrogen and oxygen containing solid layer over a substrate.In another aspect, the invention includes a gate stack forming method, comprising: a) forming a polysilicon layer over a substrate; b) forming a metal silicide layer over the polysilicon layer; c) depositing an antireflective material layer over the metal silicide utilizing a high density plasma; d) forming a layer of photoresist over the antireflective material layer; e) photolithographically patterning the layer of photoresist to form a patterned masking layer from the layer of photoresist; and f) transferring a pattern from the patterned masking layer to the antireflective material layer, metal silicide layer and is polysilicon layer to pattern the antireflective material layer, metal silicide layer and polysilicon layer into a gate stack.
摘要:
A high aspect ratio contact structure using a metal silicide adhesion layer that is interposed between titanium and titanium nitride (TiN) to promote adhesion of TiN to Ti. The metal silicide adhesion layer created from silicon doped CVD Ti can be deposited over the unreacted Ti after the silicidation reaction or deposited directly on the silicon substrate in place of CVD Ti. The contact structure further includes contact fill that is comprised of TiCl4 based TiN, which affords improved step coverage in the contact structure.
摘要:
A process for PECVD of selected material films on a substrate comprising the steps of placing a substrate in a PECVD chamber and maintaining the chamber under vacuum pressure while introducing a precursor gas, a reactant gas, and an ionization enhancer agent into the chamber. A plasma is generated from the gases within the chamber. The energy generating the plasma causes the formation of charged species. The resulting charged species of the ionization enhancer agent assists in the formation of chemically reactive species of at least the precursor.