摘要:
Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
摘要:
Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
摘要:
Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
摘要:
Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
摘要:
Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
摘要:
The invention includes methods of forming integrated circuitry, methods of forming memory circuitry, and methods of forming field effect transistors. In one implementation, conductive metal silicide is formed on some areas of a substrate and not on others. In one implementation, conductive metal silicide is formed on a transistor source/drain region and which is spaced from an anisotropically etched sidewall spacer proximate a gate of the transistor.
摘要:
A fully-depleted (FD) Silicon-on-Insulator (SOI) MOSFET access transistor comprising a gate electrode of a conductivity type which is opposite the conductivity type of the source/drain regions and a method of fabrication are disclosed.
摘要:
Sacrificial plugs for forming contacts in integrated circuits, as well as methods of forming connections in integrated circuit arrays are disclosed. Various pattern transfer and etching steps can be used to create densely-packed features and the connections between features. A sacrificial material can be patterned in a continuous zig-zag line pattern that crosses word lines. Planarization can create parallelogram-shaped blocks of material that can overlie active areas to form sacrificial plugs, which can be replaced with conductive material to form contacts.
摘要:
This invention includes methods of forming openings into dielectric material. In one implementation, an opening is partially etched through dielectric material, with such opening comprising a lowest point and opposing sidewalls of the dielectric material. At least respective portions of the opposing sidewalls within the opening are lined with an electrically conductive material. With such electrically conductive material over said respective portions within the opening, plasma etching is conducted into and through the lowest point of the dielectric material of the opening to extend the opening deeper within the dielectric material. Other aspects and implementations are contemplated.
摘要:
Sacrificial plugs for forming contacts in integrated circuits, as well as methods of forming connections in integrated circuit arrays are disclosed. Various pattern transfer and etching steps can be used to create densely-packed features and the connections between features. A sacrificial material can be patterned in a continuous zig-zag line pattern that crosses word lines. Planarization can create parallelogram-shaped blocks of material that can overlie active areas to form sacrificial plugs, which can be replaced with conductive material to form contacts.