摘要:
One embodiment of an integrated circuit includes a semiconductor body. In the semiconductor body a first trench region extends into the semiconductor body from a first surface. The integrated circuit further includes a diode including an anode region and a cathode region. One of the anode region and the cathode region is at least partly arranged in the first trench region. The other one of the anode region and the cathode region includes a first semiconductor region adjoining the one of the anode region and the cathode region from outside of the first trench region.
摘要:
A method for producing a semiconductor component is provided. The method includes providing a semiconductor body with a first surface and a second surface opposite to the first surface, etching an insulation trench from the first surface partially into the semiconductor body, forming a first insulation layer on one or more sidewalls of the insulation trench, processing the second surface by at least one of grinding, polishing and a CMP-process to expose the first insulation layer, and depositing on the processed second surface a second insulation layer which extends to the first insulation layer.
摘要:
One aspect of the invention relates to a semiconductor component with a semiconductor body with a top side and with a bottom side. A first coil that is monolithically integrated with the semiconductor body is arranged distant from the bottom side and comprises N first windings, wherein N≧1. The first coil has a first coil axis that extends in a direction different from a surface normal of the bottom side.
摘要:
A field-effect semiconductor device is provided. The field-effect semiconductor device includes a semiconductor body with a first surface defining a vertical direction. In a vertical cross-section the field-effect semiconductor device further includes a vertical trench extending from the first surface into the semiconductor body. The vertical trench includes a field electrode, a cavity at least partly surrounded by the field electrode, and an insulation structure substantially surrounding at least the field electrode. Further, a method for producing a field-effect semiconductor device is provided.
摘要:
Disclosed is a method of forming a semiconductor device with drift regions of a first doping type and compensation regions of a second doping type, and a semiconductor device with drift regions of a first doping type and compensation regions of a second doping type.
摘要:
A semiconductor device includes a first contact in low Ohmic contact with a source region of the device and a first portion of a body region of the device formed in an active area of the device, and a second contact in low Ohmic contact with a second portion of the body region formed in a peripheral area of the device. The minimum width of the second contact at a first surface of the device is larger than the minimum width of the first contact at the first surface so that maximum current density during commutating the semiconductor device is reduced and thus the risk of device damage during hard commutating is also reduced.
摘要:
A semiconductor device with a dielectric layer is produced by providing a semiconductor body with a first trench extending into the semiconductor body, the first trench having a bottom and a sidewall. A first dielectric layer is formed on the sidewall in a lower portion of the first trench and a first plug is formed in the lower portion of the first trench so as to cover the first dielectric layer. The first plug leaves an upper portion of the sidewall uncovered. A sacrificial layer is formed on the sidewall in the upper portion of the first trench and a second plug is formed in the upper portion of the first trench. The sacrificial layer is removed so as to form a second trench having sidewalls and a bottom. A second dielectric layer is formed in the second trench and extends to the first dielectric layer.
摘要:
A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
摘要:
A semiconductor component including a lateral transistor component is disclosed. One embodiment provides an electrically insulating carrier layer. On the carrier layer a first and a second semiconductor layer are arranged on above another and are separated from another by a dielectric layer and from which at least the first semiconductor layer includes a polycrystalline semiconductor material, an amorphous semiconductor material or an organic semiconductor material. In the first semiconductor layer: a source zone, a body zone, a drift zone and a drain zone are provided. In the second semiconductor layer; a drift control zone is arranged adjacent to the drift zone, including a control terminal at a first lateral end for applying a control potential, and is coupled to the drain zone via a rectifying element at a second lateral end. A gate electrode is arranged adjacent to the body zone and is dielectrically insulated from the body zone by a gate dielectric layer.