Abstract:
An aperture device for measuring thin films has an aperture ring, of a material and thickness that is impenetrable by the radiation from radionuclides. The ring has a passage for emitted and reflected radiation extending approximately perpendicular to said ring, and a radiation device consisting of at least one collimating radiation source holder comprising a tube of a predetermined diameter that is permeable to radiation in the forward direction and has sides and a back that are impermeable to radiation and houses a radionuclide. The forward end surface of the tube lies behind the forward end surface of the passage. The cross-section of the passage is large compared to the cross-section of the radionuclide. A partition divides the passage into at least two chambers that are open at their rearward and forward ends. The partition has partition walls that are impermeable to radiation. The radiation source holder is arranged in one of the chambers, the cross-section of which chamber is a multiple of the cross-section of the radiation source holder. The forward end surface of the radiation source holder lies behind the forward end surface of the partition.
Abstract:
A measuring device for detection pf measurement signals during a penetrating movement of a penetrating member into a surface of a test object or during a sensing movement of the penetrating member on the surface of the test object. The measuring device includes a housing which accommodates a force generating device and on which a holding element is arranged remote from the force generating device, which holding element is movable relative to the housing at least in one direction along a longitudinal axis of the housing and which accommodates the penetrating member. The measuring device also includes at least one first measuring element for measuring the penetration depth of the penetrating member into the surface of the test object or a traversing movement of the penetrating member along the longitudinal axis relative to the housing during a sensing movement on the surface of the test object, wherein a transmission element is provided which extends between the force generating device and the penetrating member.
Abstract:
Measuring probe for non-destructive measuring of the thickness of thin layers, in particular in cavities, which are accessible by an opening or on curved surfaces, with a measuring head, which includes at least one sensor element and at least one contact spherical cap, assigned to the sensor element on a surface, to be checked, of the cavity, and with a gripping element for positioning and guiding the measuring probe on and/or along the surface to be measured, wherein on the gripping element, a long, elastically yielding guide bar is provided, which accepts the at least one measuring head on its end opposing the gripping element, in such a way that it is moveable with at least one degree of freedom in relation to the guide bar.
Abstract:
An optoelectronic semiconductor device includes an optoelectronic semiconductor layer sequence on a metal carrier element, which includes as a first component silver and as a second component a material having a lower coefficient of thermal expansion than silver, wherein the first and second components are intermixed in the metal carrier element.
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers, in particular in cavities, which are accessible by an opening or on curved surfaces, with a measuring head, which comprises at least one sensor element and at least one contact spherical cap, assigned to the sensor element on a surface, to be checked, of the cavity, and with a gripping element for positioning and guiding the measuring probe on and/or along the surface to be measured, wherein on the gripping element, a long, elastically yielding guide bar is provided, which accepts the at least one measuring head on its end opposing the gripping element, in such a way that it is moveable with at least one degree of freedom in relation to the guide bar.
Abstract:
The invention relates to a measuring probe for measuring the thickness of thin layers, having a housing (14) with at least one sensor element (17), which is received at least slightly moveably along a longitudinal axis (16) and which comprises at least one first winding device (44), which has a magnetic pot core (41) arranged in the longitudinal axis (16) of the housing (14), and to whose central pin (42) a first and second coil (70, 71) are allocated, and having a spherical positioning cap (21) on the central pin (42) pointing towards the measuring surface of an object to be measured, which cap comprises a bearing surface (57) for fitting on a measuring surface, wherein a second winding device (48) is provided allocated to the spherical positioning cap (21), which device is formed from a discoidal or annular carrier (49) having at least one Archimedean coil (51), and a shield (83, 85) is provided at least partially between the first and second winding device (44, 48).
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers on an object with a measuring head, which comprises at least one sensor element for contact on a measurement surface of an object, and with a support device for receiving the measuring head, which is at least partly surrounded by a housing, wherein at least one further measuring head, which is adjacent to and separated from the first measuring head, is arranged on the support device, which can be controlled independently of the first measuring head.
Abstract:
A method of producing optoelectronic components is indicated, in which a plurality of semiconductor bodies, each with a semiconductor layer sequence, are provided. In addition, a component carrier assembly with a plurality of connection pads is provided. The semiconductor bodies are positioned relative to the component carrier assembly. An electrically conductive connection is produced between the connection pads and the associated semiconductor bodies and the semiconductor bodies are attached to the component carrier assembly. The optoelectronic components are finished in that one component carrier (30) is formed from the component carrier assembly, to which the semiconductor bodies are attached, for each optoelectronic component.
Abstract:
The invention relates to a calibrating device for adapting a measuring device for measuring the thickness of thin layers on an object to be measured, comprising a calibrating surface (12) having a flat upper side and a flat underside, which are provided at a distance with a predetermined thickness, characterized in that the calibrating surface (12) is arranged separate from at least one edge area (18) and the calibrating surface (12) is connected to the at least one edge area (18) via at least one transition area (14).
Abstract:
A prestage for generating a control signal for an output driver of an integrated circuit, wherein the integrated circuit can be provided with a reference potential and a supply potential fixed in relation to the reference potential, comprises an input for receiving an input signal from the integrated circuit, a circuitry for generating an output signal based on the received input signal, an output for outputting the generated output signals as control signal for an output driver as well as a current source, which is effectively connected to the circuitry. Thereby, the circuitry for generating an output signal and the current source are connected in series and connected to a first potential and a second potential such that a prestage potential difference across the series circuit is higher than a supply potential difference between the supply potential and the reference potential. Such a prestage has the advantage that it is less sensitive against variations on the reference potential or the reference potential, respectively, than conventional circuitries and can generate an output signal with well defined rise times.