Abstract:
To produce a trivalent chromium based coating on an object, a layer of nickel phosphorus alloy is deposited on the object, an intermediate layer of another metal or metal alloy or ceramic is deposited on the NiP layer, and a chromium layer is deposited from a trivalent chromium bath on the intermediate layer. The coated object is subjected to one or more heat treatments to harden the coating and to produce multiphase layers including at least one layer containing crystalline Ni and crystalline Ni3P and at least one layer containing crystalline Cr. The intermediate layer can consist of copper, molybdenum, a metal alloy or a non-metallic solid, such as an oxide, nitride or carbide of a metal.
Abstract:
A method for forming a coating on a substrate is provided. To an assembly 10 including a substrate 12, a porous matrix 14 on the substrate 12, and an impregnating material 16 on or within the porous matrix 14, the method includes applying an amount of energy 18 from an energy source 20 effective to melt the impregnating material 16 and a portion of the substrate. In this way, the impregnating material 16 impregnates the porous matrix 14. The method further includes cooling the assembly 10 to provide a coating 26 comprising the porous matrix 14 integrated with the substrate 12.
Abstract:
An electric conduction heat dissipation substrate includes a ceramic substrate, and a seed layer, and a buffering material layer and a copper circuit layer formed thereon in order. The buffering material layer has a coefficient of thermal expansion between those of the ceramic substrate and the copper circuit layer. Moreover, the buffering material layer is composed of alloy material and ceramic material or composed of metal material and ceramic material.
Abstract:
The present invention provides a hard film which has high wear resistance and excellent peeling resistance and can be prevented from peeling off a base material over a long period of time and a hard film formed body on which the hard film is formed. A hard film (8) has a structure composed of a first mixed layer (8a), consisting mainly of Cr and WC, which is formed directly on a raceway surface (2a) of an inner ring (2) (base material) of a rolling bearing, a second mixed layer (8b), consisting mainly of WC and DLC, which is formed on the first mixed layer (8a), and a surface layer (8c), consisting mainly of DLC, which is formed on the second mixed layer (8b). In the first mixed layer (8a), a content rate of the Cr becomes continuously or stepwise lower and that of the DLC becomes continuously or stepwise higher from a side of the base material toward a side of the second mixed layer (8b). In the second mixed layer (8b), a content rate of the WC becomes continuously or stepwise lower and that of the DLC becomes continuously or stepwise higher from a side of the first mixed layer (8a) toward a side of the surface layer (8c). A content of hydrogen in the second mixed layer (8b) is set to 10 to 45 atomic percent.
Abstract:
A composition for a reinforced metal matrix coating, and a method of preparing and coating the composition. The composition includes a plurality of sacrificial metallic binder particles that is anodic with respect to a base substrate, and a plurality of hard particles.
Abstract:
A coating on mono- or poly-crystalline diamond or diamond-containing material includes a first adhesive layer formed directly on the diamond or diamond-containing material, the first layer including tungsten and tungsten carbide alloyed with fluorine in an amount of 0.001 to 0.12 wt % calculated on the total weight of the first layer. The coating further includes a second protective layer formed on the first layer, the second layer including at least tungsten alloyed with fluorine in an amount of 0.001 to 0.12 wt % calculated on the total weight of the second layer. The adhesive layer provides excellent bond strength to diamond, while the protective layer provides good protection against oxidation and molten metals used for attaching the coated diamonds to tools.
Abstract:
A protective coating for a surface exposed to hot gas flow comprises a thermal layer, a conducting layer and an abrasive layer. The thermal layer comprises alumina having a sufficient amount of impurities to lower the thermal layer thermal conductivity. The layer is formed from a powder having a thermal conductivity no more than 10 BTU in/hr ft2 ° F., and overlies the surface. The conducting layer overlies the thermal layer. The abrasive layer comprises abrasive particles bonded in a metal matrix that is electroplated onto the conducting layer.
Abstract translation:用于暴露于热气流的表面的保护涂层包括热层,导电层和磨料层。 热层包括具有足够量的杂质的氧化铝以降低热层的导热性。 该层由导热率不超过10BTU in / hr ft2°F的粉末形成,并且覆盖在表面上。 导电层覆盖在热层上。 研磨层包括结合在电镀在导电层上的金属基质中的磨料颗粒。
Abstract:
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Abstract:
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Abstract:
With regard to an Al—Cr—Zr based alloy having annealing temper, a high temperature strength at 180 to 200 degrees C. is ensured. An aluminum alloy for a plain bearing having improved fatigue resistance is to be provided. An aluminum alloy for a plain bearing solving the problems has a composition of 3 to 7 mass % Mg, 0.1 to 0.3 mass % Cr, and 0.1 to 0.3 mass % Zr, with the balance being Al and inevitable impurities. A principal structure of the aluminum alloy consist of an Al matrix containing solute Mg, minute particles of Cr, and Zr.