Abstract:
A PM accumulation amount estimation unit 50 is provided with an exhaust amount computation unit 51 for computing PM exhaust amount which is discharged in an exhaust gas passage 3, and a passive regeneration amount computation unit 52 for computing a PM regeneration amount in a DPF 7, and is configured to estimate the PM accumulation amount in the DPF 7 from the difference between the PM exhaust amount computed by the exhaust amount computation unit 51 and the PM regeneration amount computed by the passive regeneration amount computation unit 52. The PM accumulation amount estimation unit 50 is further configured such that, when an abnormality is found in an airflow meter 31, the PM regeneration amount from NO2 is computed, and the PM accumulation amount in the DPF is estimated, without using the airflow amount measured by the airflow meter 31.
Abstract:
The purpose of the present invention is to provide an exhaust purification device that is capable of adding an appropriate amount of urea solution without the need to directly measure the NOx emissions amount using an NOx measuring means. The exhaust purification device uses urea solution as a reducing agent for reducing nitrogen oxides within exhaust, and is provided with a temperature sensor, a humidity sensor, and a control device. A map is stored in the control device, and in said map the real NOx emissions amount for each rotation speed and each load of an engine occurring at a predetermined air temperature and a predetermined absolute humidity are converted using a correction formula into a reference NOx emissions amount for each rotation speed and each load of the engine while in a standard state. Using the map, the control device calculates a reference NOx emissions amount that corresponds to the rotation speed detected by a rotation speed sensor and to the load detected by a load sensor, uses the correction formula to convert the reference NOx emissions amount into the real NOx emissions amount occurring at an air temperature and an absolute humidity, and calculates a urea solution addition amount.
Abstract:
SCR system for treating the exhaust gases of an internal combustion engine, this system comprising a line for feeding a urea solution into the exhaust gases and a pump capable both of feeding the urea solution into the exhaust gases and of purging at least one part of the line by sucking a gas therethrough by means of a suction device, this system also comprising a control unit capable of activating and/or deactivating the operation of the pump and that of the suction device in a sequential manner in the course of one and the same purge procedure.
Abstract:
A method for monitoring the enabling of a system which is assigned to an internal combustion engine, in which the readiness for operation of the system is dependent on an operating temperature, is characterized in that a fault in the enabling of the system is inferred (106) if operation of the system cannot be detected on expiry of a predeterminable time period after the starting of the internal combustion engine or on the recurrence of readiness for operation.
Abstract:
An exhaust aftertreatment system for an engine is provided that includes a burner, an air supply system and a control module. The air supply system may be in fluid communication with the burner and may include an air compressor disposed upstream from the burner. The air compressor may include a pump mechanism, a clutch assembly selectively transferring torque from the engine to the pump mechanism, and a motor selectively driving the pump mechanism. The control module may be in communication with the clutch assembly and the motor. The control module may selectively switch the air compressor between a first operating mode in which the clutch assembly transfers torque from the engine to the pump mechanism and a second operating mode in which the motor drives the pump mechanism.
Abstract:
A regeneration device that performs regeneration treatment of a particulate matter removing filter estimates a trapping amount of particulate matter trapped in the filter by two systems. Specifically, there are provided an estimating unit that estimates a first estimated trapping amount based upon a rotational speed of an engine and a fuel injection quantity and an estimating unit that estimates a second estimated trapping amount based upon a differential pressure across the particulate matter removing filter. The regeneration device determines whether or not the regeneration treatment is executed based upon whether or not at least one of the two estimated trapping amount is equal to or more than a preset trapping amount threshold value. Further, the regeneration device determines that there is a malfunction in the regeneration device in a case where the second estimated trapping amount is larger than the first estimated trapping amount.
Abstract:
In an exhaust gas treatment method for an internal combustion engine, a DPF abnormal combustion causing operation is determined to have occurred when the internal combustion engine shifts from a high rotation or high load operation region α to a low rotation, low load operation region β within a set time T1. When it is determined that a DPF abnormal combustion causing operation has occurred, abnormal combustion of PM collected in the DPF is suppressed by fully opening an intake throttle valve (44) in order to increase an exhaust gas flow so that heat is removed by sensible heat of the exhaust gas, thereby cooling a DPF device (52), and continuing a late post-injection in order to reduce an oxygen concentration of the DPF.
Abstract:
A control pressure switching valve is disposed between a displacement regulator and a pressure control valve. The control pressure switching valve is switched between a control position (j), in which a load sensing control pressure (PLS) is permitted to be outputted from the pressure control valve to the displacement regulator, and a control release position (k), in which the load sensing control pressure (PLS) to be outputted to the displacement regulator is reduced to a prescribed low pressure value. When the regeneration of a filter is determined to be necessary, the controller switches the control pressure switching valve to the control release position (k). When the load sensing control pressure (PLS) is reduced to the low pressure value with the control pressure switching valve switched to the control release position (k), the displacement regulator increases a delivery displacement of a hydraulic pump, thereby increasing rotational load of an engine.
Abstract:
A method of supplying fuel vapor to an exhaust aftertreatment device of a motor vehicle is provided. The method includes evaporating fuel on a voltage-biased, resistive heating element, the element set in an enclosure configured to release fuel vapor to the exhaust-aftertreatment device, and indicating that the element is degraded if a current flowing through the element is less than a threshold current. In some embodiments, the threshold current is based on the ambient temperature and/or the amount of fuel in the enclosure.
Abstract:
An engine exhaust treatment and fuel efficiency improvement system includes a NOx module that determines a quantity of NOx emitted from an engine. A selective catalytic reduction (SCR) efficiency module determines a SCR efficiency to reduce the determined NOx quantity below a predetermined threshold. A reagent dosing module determines a quantity of reagent required to reduce the NOx quantity below the predetermined threshold. An injection optimization module determines whether an increase in system operating efficiency may be obtained by changing an injected reagent quantity and an engine operating parameter in cooperation with each other while maintaining the NOx quantity below the threshold, the system being operable to change the reagent injection quantity and engine operating parameter to increase system efficiency.