摘要:
A trench power semiconductor device is provided. A trench gate structure of the trench power semiconductor device located in a cell trench of an epitaxial layer includes a first dielectric layer, a second dielectric layer, a gate electrode, a third dielectric layer, and a shielding layer. The second dielectric layer is interposed between the first and third dielectric layers, and the second dielectric layer is made from different material than the first dielectric layer. After performing a selective etching step on the second dielectric layer, a recess can be formed among the first, second and third dielectric layers. The gate electrode includes a conductive layer formed in the recess region, and the shielding electrode is surrounded by the third dielectric layer and insulated from the conductive layer.
摘要:
A method of forming a contact opening in a semiconductor substrate is presented. A plurality of trench gates each having a projecting portion are formed in a semiconductor substrate, and a stop layer is deposited over the semiconductor substrate extending over the projecting portions, wherein each portion of the stop layer along each of the sidewalls of the projecting portions is covered by a spacer. By removing the portions of the stop layer not covered by the spacers by utilizing a relatively higher etching selectivity of the stop layer to the spacers, the openings between adjacent projecting portions with an L-type shape on each sidewall can be formed, and a lithography process can be performed to form self-aligned contact openings thereafter.
摘要:
A power semiconductor device having low gate input resistance and a manufacturing method thereof are provided. The power semiconductor device includes a substrate, at least a trench transistor, a conductive layer, a metal contact plug, an insulating layer, an interlayer dielectric, a gate metal layer, and a source metal layer. The metal contact plug can serve as a buried gate metal bus line, and the metal contact plug can pass under the source metal layer and keeps the area of the source metal layer complete. Accordingly, the present invention can provide a lower gate input resistance without dividing the source metal layer, so the source metal layer can have a larger and complete area for the following packaging and bonding process.
摘要:
A trench power device includes a semiconductor layer, a trench gate structure, a trench source structure, and a contact. The semiconductor layer has an epitaxial layer, a doped body region, a S/D region, and a doped contact-carrying region. The doped body region is formed in the epitaxial layer, the S/D region is formed in the doped body region, and the doped contact-carrying region is formed in the doped body region and outside a projecting portion defined by orthogonally projecting from the S/D region to the doped body region. The trench gate structure is embedded in the S/D region, the doped body region, and the epitaxial layer. The trench source structure is embedded in the doped body region and the epitaxial layer, and is connected to the doped contact-carrying region. The contact is connected to the S/D region and the doped contact-carrying region.
摘要:
The present invention provides a trench type power transistor device including a semiconductor substrate, at least one transistor cell, a gate metal layer, a source metal layer, and a second gate conductive layer. The semiconductor substrate has at least one trench. The transistor cell includes a first gate conductive layer disposed in the trench. The gate metal layer and the source metal layer are disposed on the semiconductor substrate. The second gate conductive layer is disposed between the first gate conductive layer and the source metal layer. The second gate conductive layer electrically connects the first gate conductive layer to the gate metal layer, and the second gate conductive layer is electrically insulated from the source metal layer and the semiconductor substrate.
摘要:
The present invention provides a semiconductor device including a semiconductor substrate having a first conductive type, at least one high-side transistor device and at least one low-side transistor device. The high-side transistor device includes a doped high-side base region having a second conductive type, a doped high-side source region having the first conductive type and a doped drain region having the first conductive type. The doped high-side base region is disposed within the semiconductor substrate, and the doped high-side source region and the doped drain region are disposed within the doped high-side base region. The doped high-side source region is electrically connected to the semiconductor substrate, and the semiconductor substrate is regarded as a drain of the low-side transistor device.
摘要:
An object of this invention is to provide a Schottky diode structure to increase the contact area at a Schottky junction between the Schottky Barrier metal and a semiconductor substrate. The larger contact area of the Schottky junction is, the lower of the forward voltage drop across the Schottky diode will be, thereby improving the performance and efficiency of the Schottky diode.The present invention also discloses that a plurality of trenches with adjacent top mesas can be used to form a Schottky diode with even larger contact area, wherein the trenches are built using the isolation area between two cells of MOSFET with minimum extra overhead by shrinking the dimension of pitch between two trenches.
摘要:
A trenched power semiconductor element, a trenched-gate structure thereof being in an element trench of an epitaxial layer and including at least a shielding electrode, a shielding dielectric layer, a gate electrode, an insulating separation layer, and a gate insulating layer. The shielding electrode is disposed at the bottom of the element trench, the shielding dielectric layer is disposed at a lower portion of the element trench, surrounding the shielding electrode to separate the shielding electrode from the epitaxial layer, wherein the top portion of the shielding dielectric layer includes a hole. The gate electrode is disposed above the shielding electrode, being separated from the hole at a predetermined distance through the insulating separation layer. The insulating separation layer is disposed between the shielding dielectric layer and the gate electrode layer to seal the hole.
摘要:
The present invention provides a termination structure of a power semiconductor device and a manufacturing method thereof. The power semiconductor device has an active region and a termination region. The termination region surrounds the active region, and the termination structure is disposed in the termination region. The termination structure includes a semiconductor substrate, an insulating layer and a metal layer. The semiconductor substrate has a trench disposed in the termination region. The insulating layer is partially filled into the trench and covers the semiconductor substrate, and a top surface of the insulating layer has a hole. The metal layer is disposed on the insulating layer, and is filled into the hole.
摘要:
The power device with low parasitic transistor comprises a recessed transistor and a heavily doped region at a side of a source region of the recessed transistor. The conductive type of the heavily doped region is different from that of the source region. In addition, a contact plug contacts the heavily doped region and connects the heavily doped region electrically. A source wire covers and contacts the source region and the contact plug to make the source region and the heavily doped region have the same electrical potential.