摘要:
A system according to the principles of the present disclosure includes a throttle limit determination module, a throttle area adjustment module, and a throttle control module. The throttle limit determination module determines a throttle limit based on an intake cam phaser position. The throttle area adjustment module adjusts a desired throttle area based on the throttle limit when the desired throttle area is greater than the throttle limit. The throttle control module controls a throttle opening area of a throttle valve based on the desired throttle area.
摘要:
A control system includes a temperature determination module and a catalyst protection module. The temperature determination module determines a temperature of exhaust gas based on a resistance of a heating element of an oxygen sensor. The catalyst protection module adjusts an operating parameter of an engine to decrease the temperature of the exhaust gas when the temperature of the exhaust gas is greater than a threshold temperature. The threshold temperature is based on a temperature that damages a catalyst in an exhaust system.
摘要:
An engine control system includes a desired manifold absolute pressure (MAP) module, a MAP to torque module, a threshold determination module, and a fuel economy (FE) mode module. The desired MAP module determines a desired MAP for operation of an engine in one of a cylinder deactivation mode and a low-lift mode based on a difference between a desired vacuum and an air pressure upstream of a throttle valve. The MAP to torque module determines a desired torque output of the engine for operation in the one of the cylinder deactivation mode and the low-lift mode based on the desired MAP. The threshold determination module determines an entry torque based on the desired torque output. The FE mode module selectively triggers operation in the one of the cylinder deactivation mode and the low-lift mode based on a comparison of the entry torque and a torque request.
摘要:
A control system for a powertrain includes an energy determination module and a speed control module. The energy determination module determines a rotational energy input to the powertrain during a first period of a negative lash event of the powertrain. The speed control module selectively limits an increase in a rotational speed of the engine to a first predetermined rate based on the rotational energy during a second period of the negative lash event following the first period. The rotational energy is based on an acceleration rate of the rotational speed, and the speed control module limits the increase when the acceleration rate is greater than a predetermined acceleration rate. The speed control module further selectively increases the rotational speed at a second predetermined rate during a third period beginning at an end of the second period. A related method is also provided.
摘要:
An engine control system includes an inertia phase detection module, a feed-forward (FF) engine speed module, a FF APC module, a FF phaser postion module, and a phaser control module. The inertia phase detection module determines when an inertia phase of a gear shift is occurring within a transmission. The FF engine speed module predicts an engine speed for a future time when the inertia phase ends. The FF APC module predicts an air-per-cylinder (APC) for the future time based on the engine speed. The FF phaser position module determines a FF phaser position based on the engine speed and the APC. The phaser control module controls a camshaft phaser position based on the FF phaser position during the inertia phase of the gear shift.
摘要:
An engine control system includes a spark bound module that determines a bounded spark value based on a desired spark value, a torque bound module that determines a bounded torque value based on the bounded spark value and a desired torque value, and an inverse torque calculation module that determines a desired engine air value based on the bounded torque value and the square of the bounded spark value. The engine air value may be one of a desired air-per-cylinder value and a desired manifold air pressure value. The bounded spark value and the bounded torque value are determined based on one or more of a plurality of engine actuator positions. Related methods for determining the bounded spark value, the bounded torque value, and the engine air value are also provided.
摘要:
A control module includes a predicted torque control module that determines a desired throttle area based on a transmission torque request and a desired predicted torque. A throttle security module determines a throttle limit based on the desired throttle area and the desired predicted torque and determines an adjusted desired throttle area based on the throttle limit. A throttle actuator module adjusts a throttle based on the adjusted desired throttle area.
摘要:
A method of controlling sounds associated with a vehicle is provided. The method includes: performing on a processor, monitoring engine torque; and selectively controlling the generation of one or more tones associated with the vehicle based on the engine torque.
摘要:
A control system for use with an engine and a transmission in a vehicle is provided that includes at least one controller having a processor with at least one stored algorithm that determines different crankshaft torque capacities associated with different respective torque actuators including a relatively slow torque actuator, such as an airflow actuator, and at least one relatively fast torque actuator, such as a spark actuator or a fuel actuator. The algorithm determines a torque actuation range over which to modify engine torque during an oncoming shift of the transmission. The torque actuation range may be based at least partially on a target gear of the upshift, desired shift duration, and a vehicle operating condition indicative of an operator intent regarding shift duration. Requests for torque modification by use of the torque actuators are then made to provide the torque actuation range.
摘要:
A control system for an engine includes a first spark control module and a second spark control module. The first spark control module retards spark timing for M of N cylinders of the engine to a first spark timing during a period before deactivating or after reactivating the M cylinders, wherein M is an integer greater than or equal to one, and wherein N is an integer greater than M. The second spark control module advances spark timing for (N−M) active cylinders of the engine to a second desired spark timing during the period before deactivating or after reactivating the M cylinders, wherein the second spark timing is greater than the first spark timing.