摘要:
A titanium oxide nanoparticle includes anatase titanium oxide, and may be a nanofiber having a minimum dimension less than 200 nanometers and having an aspect ratio greater than 20:1. A titanium oxide nanoparticle including anatase titanium oxide may include a dopant metal and/or a dopant nonmetal, and may be in a form other than a nanosphere. A method of making nanoparticles includes heating a reaction mixture in an autoclave, where the reaction mixture includes a titanium source and a polar organic solvent.
摘要:
A quaternary oxide includes a dopant metal, a dopant nonmetal, titanium, and oxygen. The atomic ratio of titanium, oxygen and dopant nonmetal may be 1:0.5-1.99:0.01-1.5. Quaternary oxides may be used in catalytic compositions, in coatings for disinfecting surfaces and in coatings for self-cleaning surfaces. A method of making a quaternary oxide includes combining ingredients including a titanium source, a dopant nonmetal source, a dopant metal salt, and a polar organic solvent to form a reaction mixture; and heating the reaction mixture.
摘要:
A method of making a doped metal oxide includes heating a first doped metal oxide by rapid thermal annealing, to form a second doped metal oxide. The crystal structure of the second doped metal oxide is different from the crystal structure of the first doped metal oxide. The method may provide a doped titanium oxide, where the atomic ratio of dopant nonmetal to titanium is from 2% to 20%, and at least 10% of the doped titanium oxide is in the rutile phase. The method also can provide a doped tin oxide, where the atomic ratio of dopant nonmetal to tin is from 2% to 20%, and at least 50% of 900 the doped tin oxide is in the rutile phase.
摘要:
A quaternary oxide includes a dopant metal, a dopant nonmetal, titanium, and oxygen. The atomic ratio of titanium, oxygen and dopant nonmetal may be 1:0.5-1.99:0.01-1.5. Quaternary oxides may be used in catalytic compositions, in coatings for disinfecting surfaces and in coatings for self-cleaning surfaces. A method of making a quaternary oxide includes combining ingredients including a titanium source, a dopant nonmetal source, a dopant metal salt, and a polar organic solvent to form a reaction mixture; and heating the reaction mixture.
摘要:
A quaternary oxide includes a dopant metal, a dopant nonmetal, titanium, and oxygen. The atomic ratio of titanium, oxygen and dopant nonmetal may be 1:0.5-1.99:0.01-1.5. Quaternary oxides may be used in catalytic compositions, in coatings for disinfecting surfaces and in coatings for self-cleaning surfaces. A method of making a quaternary oxide includes combining ingredients including a titanium source, a dopant nonmetal source, a dopant metal salt, and a polar organic solvent to form a reaction mixture; and heating the reaction mixture.
摘要:
A method of manufacturing a ceramic coated fiber comprises heat treating an activated carbon coated fiber containing a ceramic precursor, to form a ceramic coated fiber.
摘要:
A method of purifying water comprises contacting the water with a quaternary oxide while exposing the quaternary oxide to visible light, the quaternary oxide containing a dopant metal, a dopant nonmetal, titanium, and oxygen. The atomic ratio of titanium, oxygen and dopant nonmetal is 1:0.5-1.99:0.01-1.5.
摘要:
A method of making a doped metal oxide comprises heating a first doped metal oxide with a laser, to form a crystallized doped metal oxide. The crystallized doped metal oxide has a different crystal structure than the first doped metal oxide.
摘要:
A quaternary oxide includes a dopant metal, a dopant nonmetal, titanium, and oxygen. The atomic ratio of titanium, oxygen and dopant nonmetal may be 1:0.5-1.99:0.01-1.5. Quaternary oxides may be used in catalytic compositions, in coatings for disinfecting surfaces and in coatings for self-cleaning surfaces. A method of making a quaternary oxide includes combining ingredients including a titanium source, a dopant nonmetal source, a dopant metal salt, and a polar organic solvent to form a reaction mixture; and heating the reaction mixture.
摘要:
A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.