摘要:
Microfeature dies with redistribution structures that reduce or eliminate line interference are disclosed. The microfeature dies can include a substrate having a bond site and integrated circuitry electrically connected to the bond site. The microfeature dies can also include and a redistribution structure coupled to the substrate. The redistribution structure can include an external contact site configured to receive an electric coupler, a conductive line that is electrically connected to the external contact site and the bond site, and a conductive shield that at least partially surrounds the conductive line.
摘要:
Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
摘要:
Methods for fabricating conductive structures on and/or in interposing devices and microfeature devices that are formed using such methods are disclosed herein. In one embodiment, a method for fabricating interposer devices having substrates includes forming a plurality of conductive sections on a first substrate in a first pattern. The method continues by forming a plurality of conductive sections on a second substrate in a second pattern. The method further includes constructing a plurality of conductive lines in a common third pattern on both the first substrate and the second substrate. The conductive lines can be formed on the first and second substrates either before or after forming the first pattern of conductive sections on the first substrate and/or forming the second pattern of conductive sections on the second substrate.
摘要:
The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
摘要:
Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
摘要:
The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
摘要:
Methods for fabricating conductive structures on and/or in interposing devices and microfeature devices that are formed using such methods are disclosed herein. In one embodiment, a method for fabricating interposer devices having substrates includes forming a plurality of conductive sections on a first substrate in a first pattern. The method continues by forming a plurality of conductive sections on a second substrate in a second pattern. The method further includes constructing a plurality of conductive lines in a common third pattern on both the first substrate and the second substrate. The conductive lines can be formed on the first and second substrates either before or after forming the first pattern of conductive sections on the first substrate and/or forming the second pattern of conductive sections on the second substrate.
摘要:
The present invention relates generally to a plating buss design and method for minimizing short circuit problems in PCB panel singulation. More particularly, the invention encompasses a serpentine plating buss which increases the PCB singulation process window thereby minimizing short circuit problems due to indexing errors caused by occasional manufacturing and equipment alignment problems. The serpentine plating buss design therefore increases board yield.
摘要:
A fiducial includes complementary patterns that are situated symmetrically about a common axis. The complementary patterns permit location of the common axis as an axis that is equidistant from the complementary patterns. The complementary patterns are displaced from the common axes by different distances so that the common axis is located using the complementary patterns nearest the common axis to accurately locate the common axis. The complementary patterns include etch-compensation features that permit the common axis to be accurately located even if an etch process defines the fiducial and the etch process exhibits a process error or variation such as underetching or overetching. The fiducial may be produced by transferring a fiducial pattern from a mask such as a photomask. The fiducial pattern may also be defined on the mask using a computer-aided design program.
摘要:
A fiducial includes complementary patterns that are situated symmetrically about a common axis. The complementary patterns permit location of the common axis as an axis that is equidistant from the complementary patterns. The complementary patterns are displaced from the common axes by different distances so that the common axis is located using the complementary patterns nearest the common axis to accurately locate the common axis. The complementary patterns include etch-compensation features that permit the common axis to be accurately located even if an etch process defines the fiducial and the etch process exhibits a process error or variation such as underetching or overetching. The fiducial may be produced by transferring a fiducial pattern from a mask such as a photomask. The fiducial pattern may also be defined on the mask using a computer-aided design program.