摘要:
A plasma processing apparatus includes a first dielectric that is connected to a microwave generating unit, the first dielectric having a section that extends along a surface of a rectangular sample, and that makes an electric field strength distribution of the microwaves generated from the microwave generating unit substantially uniform along the surface of the sample; a slot plate that is provided below the first dielectric and in which a plurality of first slots are formed, the slot plate retaining or further enhancing the uniformity of the electric field strength distribution of the microwaves in the first dielectric; a second dielectric that is provided below the slot plate and that retains or further enhances the uniformity of the electric field strength distribution of the microwaves supplied from the slot plate; and a processing unit that processes the sample using a plasma generated in the reaction vessel by the microwaves.
摘要:
A gas supply path structure forms a fluid path for allowing a laser gas to flow into or out of a pair of fluid inlet and outlet 11a and a laser gas is controlled to a predetermined subsonic speed at a throat portion. Gas supplies for controlling the speed of the gas are connected each to the fluid inlet and to the fluid outlet of the gas supply path structure and, together with a cooling device, compose a circulation system for controlling the speed and pressure of the laser gas at the fluid inlet and/or at the fluid outlet.
摘要:
A plasma is excited uniformly as a whole over the length of each slot. A laser oscillating apparatus is designed to excite a laser gas in a laser tube (2) by introducing electromagnetic waves into the laser tube through a plurality of slots (10) formed in a waveguide wall and generate a laser beam by resonating the light generated from the laser gas. A least one electrode (13) is placed near the slot (10). By giving a predetermined current density to the electrode (13), the intensity distribution of light generated from the laser gas above the slot (10) is controlled.
摘要:
In order to effectively remove gas molecules of a by-product in a chemical reaction in a solution so as to achieve high efficiency, high rate, and uniformity of the chemical reaction in the solution and in order to realize formation of a semiconductor substrate applicable to production of SOI structure and realize formation of a semiconductor substrate in which a light-emitting element or a gas sensor can be formed, on the basis of an inexpensive silicon substrate, the chemical reaction is performed while the concentration of a gas dissolved in a reaction solution in a reaction vessel is always controlled to be not more than the solubility thereof during the reaction.
摘要:
A semiconductor substrate adapted to giga-scale integration (GSI) comprises a support, at least the surface of which is made of semiconductor, an electroconductive material layer, an insulating layer and a semiconductor layer arranged sequentially in the above order. The electroconductive material layer has at least in part thereof an electroconductive reacted layer obtained by causing two metals, a metal and a semiconductor, a metal and a metal-semiconductor compound, a semiconductor and a metal-semiconductor compound, or two metal-semiconductor compounds to react each other. An electroconductive reaction terminating layer that is made of a material that does not react with the reacted layer is arranged between the reacted layer and the insulating layer or the support.
摘要:
A semiconductor device includes a semiconductor chip, a die pad including an obverse surface on which the semiconductor chip is bonded, a lead spaced apart from the die pad, a bonding wire electrically connecting the semiconductor chip and the lead to each other, and a resin package that seals the semiconductor chip and the bonding wire. The bonding wire includes a first bond portion press-bonded to the semiconductor chip by ball bonding, a second bond portion press bonded to the lead by stitch bonding, a landing portion extending from the second bond portion toward the die pad and formed in contact with an obverse surface of the lead, and a loop extending obliquely upward from the landing portion toward the semiconductor chip.
摘要:
In a laser oscillating apparatus for exciting a laser gas in a laser tube by introducing an electromagnetic wave from a waveguide into the laser tube through a plurality of slots formed in a waveguide wall, and generating a laser beam by resonating light emitted from the laser gas, the slots are formed in a line such that their longitudinal direction is consistent with the longitudinal direction of the waveguide, and a metal wall is so formed as to surround these slots. This metal wall forms a gap as a microwave passage from the slots to a window in the laser tube wall, thereby spacing the laser tube wall apart from the slots by a predetermined distance.
摘要:
A gas supply path structure forms a fluid path for allowing a laser gas to flow into or out of a pair of fluid inlet and outlet 11a and a laser gas is controlled to a predetermined subsonic speed at a throat portion. Gas supplies for controlling the speed of the gas are connected each to the fluid inlet and to the fluid outlet of the gas supply path structure and, together with a cooling device, compose a circulation system for controlling the speed and pressure of the laser gas at the fluid inlet and/or at the fluid outlet.
摘要:
An excimer laser gas in a laser tube 2 is excited by a microwave introduced from awaveguide 1, and electric field concentration occurs in a slit-shaped gap 3 provided in a plate member 11c, causing plasma discharge. Then the phase of plasma light is regulated and the light is resonated, to cause excimer laser light. This construction realizes plasma excitation entirely uniform along a lengthwise direction of laser light emission, and enables uniform laser light emission with minimum energy loss.
摘要:
In a slot array structure, electromagnetic wave emission which is uniform as a whole over the length of a laser tube is realized to allow uniform laser emission with minimum energy loss. Slots (10) are formed at a predetermined pitch in a long end face (H plane) of each waveguide (1) along a central line (m) in the longitudinal direction of the H plane to be alternately located on the left and right sides of the central line (m) and spaced apart from the central line (m) by a distance (d).