Abstract:
A circuit board assembly is provided and includes a first circuit board, a second circuit board and a first connecting module. The first connecting module includes a first connecting wire, a first connector and a second connector. The first circuit board includes a first processor, and the second circuit board includes a second processor. One end of the first connector is connected to one end of the first connecting wire, and the other end of the first connector is connected to the first circuit board. One end of the second connector is connected to the other end of the first connecting wire, and the other end of the second connector is connected to the second circuit board. The first connector is adjacent to the first processor, and the second connector is adjacent to the second processor.
Abstract:
An electromagnetic measuring probe device for measuring a thickness of a dielectric layer of a circuit board and a method thereof are disclosed. The circuit board has at least one dielectric layer, at least two conductive layers and a test area. The test area has a test pattern and a through hole. The electromagnetic measuring probe device has a probe-measuring unit, an external conductive element, plural magnetic powder groups, and a maintaining unit. The probe-measuring unit has a transparent tube and an internal conductive pin. The external conductive element electrically connects with the test pattern. The conductive layers and the internal conductive pin generate a magnetic field while the probe-measuring unit enters into the through hole. The magnetic powder groups magnetically attracted are gathered to positions corresponding to thickness-range positions of the conductive layers and held by the maintaining unit, thus a gap between the two dielectric layers is obtained.
Abstract:
Carrier board structure with an increased core-layer trace area and method for manufacturing the same are introduced. The carrier board structure comprises a core layer structure, a first circuit build-up structure, and a second circuit build-up structure. The core layer structure comprises a core layer, a signal transmission portion, and an embedded circuit layer, wherein the signal transmission portion and the embedded circuit layer are disposed inside the core layer and electrically connected. The first circuit build-up structure is disposed on the core layer on a same side as the embedded circuit layer and is electrically connected to the embedded circuit layer. The second circuit build-up structure is disposed on the core layer on a same side as the signal transmission portion, and is electrically connected to the first circuit build-up structure through the signal transmission portion and the embedded circuit layer.
Abstract:
An embedded component substrate structure and a method for manufacturing the same, with a carrier structure being formed with a groove on a top, and a chip structure with a plurality of conductors disposed in the groove. Dielectric layers are disposed on a top and a bottom of the carrier structure, and two opposite ends of multiple circuits in the carrier structure are exposed to the dielectric layers. Circuit build-up structures are disposed on the dielectric layers, and electrically connect to the circuits of the carrier structure.
Abstract:
A method of fabricating a packaging substrate includes following steps: providing a carrier board having two opposite surfaces, forming on each of the surfaces a plurality of first metal bumps; covering the carrier board and the first metal bumps with a first dielectric layer that has a plurality of first intaglios which exposes a top surface and side surface of the first metal bumps; forming a conductive seedlayer on the first dielectric layer and the first metal bumps; forming a metal layer on the conductive seedlayer; removing a portion of the metal layer and the conductive seedlayer that is higher than the top surface of the first dielectric layer, and forming a first circuit layer in the first intaglios; forming a built-up structure on the first circuit layer and the first dielectric layer, forming a pair of upper and lower entire packaging substrates.
Abstract:
A through-holed interposer is provided, including a board body, a conductive gel formed in the board body, and a circuit redistribution structure disposed on the board body. The conductive gel has one end protruding from a surface of the board body, and an area of the protruded end of the conductive gel that is in contact with other structures (e.g., packaging substrates or circuit structures) is increased, thereby strengthening the bonding of the conductive gel and reliability of the interposer.
Abstract:
A through-holed interposer is provided, including a board body, a conductive gel formed in the board body, and a circuit redistribution structure disposed on the board body. The conductive gel has one end protruding from a surface of the board body, and an area of the protruded end of the conductive gel that is in contact with other structures (e.g., packaging substrates or circuit structures) is increased, thereby strengthening the bonding of the conductive gel and reliability of the interposer.
Abstract:
A through-holed interposer is provided, including a board body, a conductive gel formed in the board body, and a circuit redistribution structure disposed on the board body. The conductive gel has one end protruding from a surface of the board body, and an area of the protruded end of the conductive gel that is in contact with other structures (e.g., packaging substrates or circuit structures) is increased, thereby strengthening the bonding of the conductive gel and reliability of the interposer.
Abstract:
A semiconductor package structure is provided, including: a semiconductor chip having electrode pads disposed thereon and metal bumps disposed on the electrode pads; an encapsulant encapsulating the semiconductor chip; a dielectric layer formed on the encapsulant and having a plurality of patterned intaglios formed therein for exposing the metal bumps; a wiring layer formed in the patterned intaglios of the dielectric layer and electrically connected to the metal bumps; and a metal foil having a plurality of metal posts disposed on a surface thereof such that the metal foil is disposed on the encapsulant with the metal posts penetrating the encapsulant so as to extend to the inactive surface of the semiconductor chip. Compared with the prior art, the present invention reduces the overall thickness of the package structure, increases the electrical transmission efficiency and improves the heat dissipating effect.
Abstract:
A package substrate and a method of fabricating the package substrate are provided. The package substrate includes a substrate having a top surface and a bottom surface opposing the top surface; an insulating protective layer formed on the top surface of the substrate; an interposer embedded in and exposed from the insulating protective layer; and passive components provided on or embedded in the interposer. By integrating the passive components into the package substrate, when a chip is provided on the interposer, the conductive path between the chip and the passive components can be shortened, and the pins of the chip have a stable voltage. Therefore, the overall electrical performance is enhanced.