摘要:
A catalyst for oxidative dehydrogenation of organic compounds is provided by forming a solution of catalyst precursor components comprised of Fe+3 and Zn+2 cations and at least one other modifier element cation in water to form an aqueous solution of the catalyst precursor components. The modifier element cation has a standard reduction potential of from greater than about −2.87 E° (V) to less than about −0.036 E° (V) with a valence of +2. A base is separately and simultaneously added to the aqueous solution in amounts to maintain the pH of the aqueous solution at a pH of from about 8.5 to about 9.5 as the catalyst precursor components. The catalyst precursor components are allowed to react and precipitate out of solution as a precipitate. The resulting precipitate is calcined to form a modified zinc ferrite catalyst compound.
摘要:
A catalyst for oxidative dehydrogenation of organic compounds is provided by forming a solution of catalyst precursor components comprised of Fe+3 and Zn+2 cations and at least one other modifier element cation in water to form an aqueous solution of the catalyst precursor components. The modifier element cation has a standard reduction potential of from greater than about −2.87 E° (V) to less than about −0.036 E° (V) with a valence of +2. A base is separately and simultaneously added to the aqueous solution in amounts to maintain the pH of the aqueous solution at a pH of from about 8.5 to about 9.5 as the catalyst precursor components. The catalyst precursor components are allowed to react and precipitate out of solution as a precipitate. The resulting precipitate is calcined to form a modified zinc ferrite catalyst compound.
摘要:
The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity.The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst.Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
摘要:
The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity.The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst.Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
摘要:
Disclosed is a catalyst composition which does not contain antimony or molybdenum for the vapor phase ammoxidation of alkanes of the general empirical formula: VWaBibMcOxwherein M is one or more elements selected from sodium, cesium, magnesium, calcium, barium, boron, yttrium, indium, aluminum, gallium, tin, titanium, silicon, zirconium, germanium, niobium and tantalum, a is 0.2 to 10, b is 0.5 to 5, c is 0 to 10 and x is determined by the valence requirements of the elements present. The catalyst precursor is precipitated from a solution or slurry of compounds of vanadium, tungsten, bismuth and, optionally, M, then separated, dried and calcined to give a phase or combination of phases active in the ammoxidation of low-weight paraffins to the corresponding unsaturated mononitriles. Nitriles may be produced in a gas phase catalytic reaction of alkanes with ammonia and oxygen in the presence of the catalyst.
摘要:
Embodiments described herein relate to a method for processing a substrate. In one embodiment, the method includes introducing a gas mixture comprising a hydrocarbon source and a diluent gas into a deposition chamber located within a processing system, generating a plasma from the gas mixture in the deposition chamber at a temperature between about 200° C. and about 700° C. to form a low-hydrogen content amorphous carbon layer on the substrate, transferring the substrate into a curing chamber located within the processing system without breaking vacuum, and exposing the substrate to UV radiation within the curing chamber at a curing temperature above about 200° C.
摘要:
Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
摘要:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
摘要:
Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less, and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater.
摘要:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.