摘要:
An apparatus that includes a reflector having a mirrored surface facing down, a glass structure located beneath the reflector, a susceptor within the glass structure having a surface facing up that is capable of holding a part to be processed, and one or more radiant heat sources directed at and located beneath the glass structure.
摘要:
A method and system for controlling the introduction of a species according to a determined concentration profile of a film comprising the species introduced on a substrate. In one aspect, the method comprises controlling the flow rate of a species according to a determined concentration profile of a film introduced on a substrate, and introducing a film on a substrate, the film comprising the species at a first concentration at a first point in the film and a second concentration different than the first concentration at a second point in the film. Also, a bipolar transistor including a collector layer of a first conductivity type, a base layer of a second conductivity type forming a first junction with the collector layer, and an emitter layer of the first conductivity type forming a second junction with the base layer. An electrode configured to direct carriers through the emitter layer to the base layer and into the collector layer is also included. In one embodiment, at least one of the first junction and the second junction is between different semiconductor materials to form at least one heterojunction. The heterojunction has a concentration profile of a semiconductor material such that an electric field changes in an opposite way to that of a mobility change.
摘要:
A method implemented by one or more processors, including receiving first information relating a plurality of flow rates of a species to corresponding concentrations of the species within films generated using the flow rates; receiving a desired concentration profile of the species within a desired film; and generating a plurality of process steps that, when performed, would form the desired film with the desired concentration profile by controlling the flow rate of the species based, in part, on the first information and the desired concentration profile, wherein a first concentration of the species at a first point in the desired concentration profile differs from a second concentration of the species at a second point in the desired concentration profile. A computer-readable medium, system and apparatus are also disclosed.
摘要:
One embodiment of a processing system for fabricating compound nitride semiconductor devices comprises one or more processing chamber operable with form a compound nitride semiconductor layer on a substrate, a transfer chamber coupled with the processing chamber, a loadlock chamber coupled with the transfer chamber, and a load station coupled with the loadlock chamber, wherein the load station comprises a conveyor tray movable to convey a carrier plate loaded with one or more substrates into the loadlock chamber. Compared to a single chamber reactor, the multi-chamber processing system expands the potential complexity and variety of compound structures. Additionally, the system can achieve higher quality and yield by specialization of individual chambers for specific epitaxial growth processes. Throughput is increased by simultaneous processing in multiple chambers.
摘要:
A showerhead for a semiconductor-processing reactor formed by an array of showerhead tiles. Each showerhead tile has a plurality of process gas apertures, which may be in a central area of the tile or may extend over the entire tile. Each showerhead tile can be dimensioned for processing a respective substrate or the array can be dimensioned for processing a substrate. An exhaust region surrounds the process gas apertures. The exhaust region has at least one exhaust aperture, and may include an exhaust slot, a plurality of connected exhaust slots or a plurality of exhaust apertures. The exhaust region surrounds the array of showerhead tiles, or a respective portion of the exhaust region surrounds the plurality of process gas apertures in each showerhead tile or group of showerhead tiles. A gas curtain aperture may be between the exhaust region and the process gas apertures of one of the showerhead tiles or adjacent to the central area of the tile.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the III-V nitride layer on the substrate.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
Embodiments of the present invention generally relate to methods and apparatus for chemical vapor deposition (CVD) on a substrate, and, in particular, to a process chamber and components for use in metal organic chemical vapor deposition. The apparatus comprises a chamber body defining a process volume. A showerhead in a first plane defines a top portion of the process volume. A carrier plate extends across the process volume in a second plane forming an upper process volume between the showerhead and the susceptor plate. A transparent material in a third plane defines a bottom portion of the process volume forming a lower process volume between the carrier plate and the transparent material. A plurality of lamps forms one or more zones located below the transparent material. The apparatus provides uniform precursor flow and mixing while maintaining a uniform temperature over larger substrates thus yielding a corresponding increase in throughput.
摘要:
An improved method and apparatus for depositing a Group III-V for a hydride vapor phase epitaxy (HVPE) process are provided. In one embodiment, an apparatus for a hydride vapor phase epitaxy process may include an elongated body having a trough defined between a first and a second wall, a channel formed in the first wall configured to provide a gas to the trough, and an inlet port formed in the body coupled to the channel. In another embodiment, a method for a hydride vapor phase epitaxy process may include providing Group III metal liquid precursor in a container disposed in a chamber, flowing a halogen containing gas across the container to form a Group III metal halide vapor to a reacting zone in the chamber, and mixing the Group III metal halide vapor with a Group V gas supplied in the chamber in the reacting zone.