Abstract:
The present invention relates to a molding which comprises a foam and at least one fiber (F). The fiber (F) has a first part (FT1), a second part (FT2) and a third part (FT3). The third part (FT3) of the fiber (F) connects the first part (FT1) and the second part (FT2) of the fiber (F) and is arranged on a second side of the foam. A first region (FB11) of the first part (FT1) of the fiber (F) and a first region (FB12) of the second part (FT2) of the fiber (F) are located inside the molding and are not in contact. A second region (FB21) of the first part (FT1) of the fiber (F) and a second region (FB22) of the second part (FT2) of the fiber (F) project from a first side of the foam. The present invention further relates to a process for producing the moldings according to the invention and to a panel which comprises the molding according to the invention and at least one layer (S1) and also to a process for producing the panel. The present invention further relates to the use of the molding/of the panel, for example as a rotor blade in wind turbines.
Abstract:
The invention relates to a molding composed of extruded foam, wherein at least one fiber (F) is present with a fiber region (FB2) within the molding and is surrounded by the extruded foam, while a fiber region (FB1) of the fiber (F) projects from a first side of the molding and a fiber region (FB3) of the fiber (F) projects from a second side of the molding, and the extruded foam is produced by an extrusion process comprising the following steps: I) providing a polymer melt in an extruder, II) introducing at least one blowing agent into the polymer melt provided in step I) to obtain a foamable polymer melt, III) extruding the foamable polymer melt obtained in step II) from the extruder through at least one die aperture into an area at lower pressure, with expansion of the foamable polymer melt to obtain an expanded foam, and IV) calibrating the expanded foam from step III) by conducting the expanded foam through a shaping tool to obtain the extruded foam.
Abstract:
The present invention relates to a process for producing a molding made from blowing agent-containing foam comprising at least one fiber (F), wherein the at least one fiber (F) is partially introduced into the blowing agent-containing foam. The two ends of the respective fiber (F) that are not surrounded by the blowing agent-containing foam thus project from one side of the corresponding molding. The present invention also provides the molding as such. The present invention further provides a panel comprising at least one such molding, produced by the process according to the invention, and at least one further layer (S1). The present invention also provides for the production of the panels of the invention and for the use thereof, for example as a rotor blade in wind turbines.
Abstract:
The present invention relates to a process for converting moldings. Here, a molding comprising a foam and at least one fiber (F), wherein the fiber (F) is with a fiber region (FB2) located inside the molding is at least partially divided at least once, wherein at least one fiber (F) is completely divided. The invention further relates to the thus obtainable converted molding and to a panel comprising the converted molding and at least one layer (S1). The present invention further relates to a process for producing the panel and to the use of the converted molding/the panel according to the invention as a rotor blade in wind turbines for example.
Abstract:
A process for the production of an at least two-layer thermoplastic foam sheet via symmetrical bonding, e.g., by thermal welding, of at least two thinner thermoplastic foam sheets to give the at least two-layer thermoplastic foam sheet. The invention further relates to thermoplastic foam sheets having at least two layers. The number of the layers of the thermoplastic foam sheet derives from the number of thin thermoplastic foam sheets that are thermally welded to one another.
Abstract:
The present invention relates to a process for the production of a structured grain on the surface of a thermoplastic having continuous-fiber reinforcement by a textile sheet, where a mixture of at least one fiber material and of at least one thermoplastic is heated and pressed in a mold to a temperature above the softening point of the thermoplastic, where a structured grain has been applied on the internal side of the mold. The at least one fiber material comprises continuous fibers and takes the form of a regularly arranged textile sheet. The textile sheet and the structured grain on the internal side of the mold are oriented in relation to one another in a manner such that during the pressing procedure the textile sheet and the structured grain on the internal side of the mold are mutually superposed. After the pressing procedure, the mixture of the at least one fiber material and the at least one thermoplastic in the mold is cooled to a temperature below the softening point of the thermoplastic, with formation of the structured grain on the surface of the thermoplastic. The present invention further relates to a thermoplastic which has continuous-fiber reinforcement by a textile sheet and has a structured grain on the surface, and is obtained by the process of the invention.
Abstract:
The invention relates to a process for the production of at least two-layer thermoplastic sheets via thermal welding of at least one thinner thermoplastic sheet with density (D1) and of at least one second thinner thermoplastic sheet with density (D2), where the density (D1) of the first thinner thermoplastic sheet is smaller than the density (D2) of the second thinner thermoplastic sheet. The process introduces at least one first heating element and at least one second heating element along mutually offset planes between the two thinner thermoplastic sheets, where the surfaces of the thinner thermoplastic sheets do not touch the surfaces of the heating elements. The first heating element transfers a quantity of energy (E1) to the surface of the first thinner thermoplastic sheet, and the second heating element transfers a quantity of energy (E2) to the surface of the second thinner thermoplastic sheet, where the quantity of energy (E1) is smaller than the quantity of energy (E2).
Abstract:
The present invention relates to a process for the production of at least two-layer thermoplastic foam sheets via thermal welding of at least two thinner thermoplastic foam sheets. In the process of the invention, at least two heating elements are conducted on mutually offset planes between the surfaces to be welded of the thinner thermoplastic foam sheets, and the foam sheets here do not touch the heating elements. The number of layers of the thermoplastic foam sheet is per se a result of the number of thinner thermoplastic foam sheets that are thermally welded to one another. If by way of example three thinner thermoplastic foam sheets are thermally welded to one another, a three-layer thermoplastic foam sheet is per se obtained, and if there are four thinner thermoplastic foam sheets the result is accordingly per se a four-layer thermoplastic foam sheet.