摘要:
We have developed an improved vapor-phase deposition method and apparatus for the attachment of organic films/coatings containing a variety of functional groups on halogen-containing substrates. The substrate surface is halogenated using a vaporous halogen-containing compound, followed by a reaction with at least one organic molecule containing at least one nucleophilic functional group. Halogenation of the substrate surface and subsequent reaction with the organic molecule are carried out in the same process chamber in a manner such that the halogenated substrate surface does not lose its functionality prior to reaction with the nucleophilic functional group(s) on the organic molecule.
摘要:
An intraocular lens with a hydrophilic polymer coating composition and method of preparing same are provided. Specifically, a composition suitable for reducing tackiness in intraocular lenses is provided wherein an acrylic intraocular lens is treated by vapor deposition with an alkoxy silyl terminated polyethylene glycol polymer composition.
摘要:
An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
摘要:
A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
摘要:
A method of protecting a substrate during fabrication of semiconductor, MEMS, or biotechnology devices. The method includes application of a protective thin film which typically has a thickness ranging from about 3 Å to about 1,000 Å, wherein precursor materials used to deposit the protective thin film are organic-based precursors which include at least one fluorine-comprising functional group at one end of a carbon back bone and at least one functional bonding group at the opposite end of a carbon backbone, and wherein the carbon backbone ranges in length from 4 carbons through about 12 carbons. In many applications at least a portion of the protective thin film is removed during fabrication of the devices.
摘要:
We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
摘要:
We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biofunctional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, a siloxane substrate surface is treated using a combination of ozone and UV radiation to render the siloxane surface more hydrophilic, and subsequently a functional coating is applied in-situ over the treated surface of the siloxane substrate.
摘要:
The carbon-doped metal oxide films described provide a low coefficient of friction, typically ranging from about 0.05 to about 0.4. Applied over a silicon substrate, for example, the carbon-doped metal oxide films provide anti-stiction properties, where the measured work of adhesion for a coated MEMS cantilever beam is less than 10 μJ/m2. The films provide unexpectedly low water vapor transmission. In addition, the carbon-doped metal oxide films are excellent when used as a surface release coating for nanoimprint lithography. The carbon content in the carbon-doped metal oxide films ranges from about 5 atomic % to about 20 atomic %.
摘要翻译:所述的碳掺杂的金属氧化物膜提供低摩擦系数,通常为约0.05至约0.4。 施加在硅衬底上,例如,碳掺杂的金属氧化物膜提供抗静电性质,其中测量的涂覆的MEMS悬臂梁的粘附力小于10μJ/ m 2。 这些膜提供了意想不到的低水蒸汽传输。 此外,当用作纳米压印光刻的表面剥离涂层时,碳掺杂的金属氧化物膜是优异的。 碳掺杂的金属氧化物膜中的碳含量为约5原子%至约20原子%。
摘要:
A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
摘要:
We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.