摘要:
A method of assembling a semiconductor device package includes first attaching a semiconductor device to a die-pad area of a leadframe. Electrical connections are then between electrical contact areas on the semiconductor device and electrical connection areas on the leadframe to form a device/leadframe assembly. An adhesion enhancing coating is then deposited on the exposed surface of the device frame/leadframe assembly before encapsulating the coated device leadframe assembly in an electrically insulating material.
摘要:
A power semiconductor device has a semiconductor body which includes an active area and a peripheral area which both define a horizontal main surface of the semiconductor body. The semiconductor body further includes an n-type semiconductor layer, a pn junction and at least one trench. The n-type semiconductor layer is embedded in the semiconductor body and extends to the main surface in the peripheral area. The pn junction is arranged between the n-type semiconductor layer and the main surface in the active area. The at least one trench extends in the peripheral area from the main surface into the n-type semiconductor layer and includes a dielectric layer with fixed negative charges. In the vertical direction, the dielectric layer is arranged both below and above the pn junction. The dielectric layer with fixed negative charges typically has a negative net charge. Further, a method for forming a semiconductor device is provided.
摘要:
A power semiconductor device has a semiconductor body which includes an active area and a peripheral area which both define a horizontal main surface of the semiconductor body. The semiconductor body further includes an n-type semiconductor layer, a pn junction and at least one trench. The n-type semiconductor layer is embedded in the semiconductor body and extends to the main surface in the peripheral area. The pn junction is arranged between the n-type semiconductor layer and the main surface in the active area. The at least one trench extends in the peripheral area from the main surface into the n-type semiconductor layer and includes a dielectric layer with fixed negative charges. In the vertical direction, the dielectric layer is arranged both below and above the pn junction. The dielectric layer with fixed negative charges typically has a negative net charge. Further, a method for forming a semiconductor device is provided.
摘要:
A semiconductor component with vertical structures having a high aspect ratio and method. In one embodiment, a drift zone is arranged between a first and a second component zone. A drift control zone is arranged adjacent to the drift zone in a first direction. A dielectric layer is arranged between the drift zone and the drift control zone wherein the drift zone has a varying doping and/or a varying material composition at least in sections proceeding from the dielectric.
摘要:
A power semiconductor device has a semiconductor body which includes an active area and a peripheral area which both define a horizontal main surface of the semiconductor body. The semiconductor body further includes an n-type semiconductor layer, a pn junction and at least one trench. The n-type semiconductor layer is embedded in the semiconductor body and extends to the main surface in the peripheral area. The pn junction is arranged between the n-type semiconductor layer and the main surface in the active area. The at least one trench extends in the peripheral area from the main surface into the n-type semiconductor layer and includes a dielectric layer with fixed negative charges. In the vertical direction, the dielectric layer is arranged both below and above the pn junction. The dielectric layer with fixed negative charges typically has a negative net charge. Further, a method for forming a semiconductor device is provided.
摘要:
A power semiconductor device and a method for its production. The power semiconductor device has at least one power semiconductor chip, which has on its top side and on its back side large-area electrodes. The electrodes are electrically in connection with external contacts by means of connecting elements, the power semiconductor chip and the connecting elements being embedded in a plastic package. This plastic package has a number of layers of plastic, which are pressed one on top of the other and have plane-parallel upper sides. The connecting elements are arranged on at least one of the plane-parallel upper sides, between the layers of plastic pressed one on top of the other, as a patterned metal layer and are electrically in connection with the external contacts by means of contact vias through at least one of the layers of plastic.
摘要:
A semiconductor module. One embodiment provides at least two semiconductor chips placed on a carrier. The at least two semiconductor chips are then covered with a molding material to form a molded body. The molded body is thinned until the at least two semiconductor chips are exposed. Then, the carrier is removed from the at least two semiconductor chips. The at least two semiconductor chips are singulated.
摘要:
A method for producing a semiconductor is disclosed. One embodiment provides a p-doped semiconductor body having a first side and a second side. An n-doped zone is formed in the semiconductor body by implantation of protons into the semiconductor body via the first side down to a specific depth of the semiconductor body and by subsequent heating at least of the proton-implanted region of the semiconductor body. A pn junction arises in the semiconductor body. The second side of the semiconductor body is removed at least as far as a space charge zone spanned at the pn junction.
摘要:
The present invention relates to a metal-semiconductor contact comprising a semiconductor layer and comprising a metallization applied to the semiconductor layer, a high dopant concentration being introduced into the semiconductor layer such that a non-reactive metal-semiconductor contact is formed between the metallization and the semiconductor layer. The metallization and/or the semiconductor layer are formed in such a way that only a fraction of the introduced doping concentration is electrically active, and a semiconductor layer doped only with this fraction of the doping concentration only forms a Schottky contact when contact is made with the metallization. Furthermore, the invention relates to a semiconductor component comprising a drain zone, body zones embedded therein and source zones again embedded therein. The semiconductor component has metal-semiconductor contacts in which the contacts made contact only with the source zones but not with the body zones.
摘要:
The present invention relates to a metal-semiconductor contact comprising a semiconductor layer and comprising a metallization applied to the semiconductor layer, a high dopant concentration being introduced into the semiconductor layer such that a non-reactive metal-semiconductor contact is formed between the metallization and the semiconductor layer. The metallization and/or the semiconductor layer are formed in such a way that only a fraction of the introduced doping concentration is electrically active, and a semiconductor layer doped only with this fraction of the doping concentration only forms a Schottky contact when contact is made with the metallization. Furthermore, the invention relates to a semiconductor component comprising a drain zone, body zones embedded therein and source zones again embedded therein. The semiconductor component has metal-semiconductor contacts in which the contacts made contact only with the source zones but not with the body zones.