Abstract:
In a method of manufacturing a three-dimensional (3D) circuit device, conducting circuits are formed on a non-conductive base through electroplating. The non-conductive base, and a circuit pattern section, at least one conducting junction and at least one current-guiding junction provided on the base are formed through double injection molding process. An electrically conductive interface layer is formed on the circuit pattern section and the junctions; and then, metal circuits are formed on the circuit pattern section through electroplating. By providing the conducting junction and the current-guiding junction, when forming metal circuits through electroplating, electroplating current can be evenly distributed over the circuit pattern section to form metal coating with uniform thickness, which enables upgraded production efficiency and reduced cost in manufacturing a 3D circuit device.
Abstract:
The present invention relates a setting method for a conducting element of an electrochemical test strip and electrochemical test strip thereof. An inspection body is formed by injection molding polymer plastic materials to coat with the plurality of conducting elements, and an external contact surface on an information outputting end of the conducting element is exposed from an inspection slot of the inspection body, so that the information outputting end of the conducting element is extended from the inspection body. Eventually, the information outputting end is bent to fix on a surface of the inspection body. The present invention is not complex and has more precision and convenience, and the manufacturing cost can be reduced efficiently, so that wide application can be expected in the near future.
Abstract:
A carrying structure of semiconductor includes a carrier made of a plastic material with a heat conduction region, each surface of the carrier has an interface layer formed on, and an electrically insulation circuit and a metal layer are defined on the interface layer. The insulation circuit is located on the surface of the heat conduction region and on an encircling annular region extended from two surfaces of the heat conduction region, and at the same time exposing parts of the carrier surface thereby splitting the metal layer on the interface layer into at least two electrodes. A thermal conductor formed in the heat conduction region has a LED chip adhered on it which has at least a contact point connected with the corresponding metal layer with a metal wiring so as to dissipate the heat generated by the chip rapidly with the thermal conductor.
Abstract:
The present invention relates a setting method for a conductive object of electrochemical test strip. In the embodiment, this manufacturing process is not complex, convenient, and has well precision, such that the cost of manufacturing an electrochemical test strip is reduced effectively, the disadvantage of past manufacturing process is improved. The present invention is highly applied and convenient, so that wide application can be expected in the future.
Abstract:
A plastic lead frame with reflection and conduction metal layer includes a base made of a metal catalyst containing or an organic substance containing plastic material, the base further includes a slanted reflection surface formed downwardly on top of the base; an insert slot continuously and staggeringly formed along the circumferential fringe of the base; a molded carrier made of non-metallic catalyst or organic substance containing plastic material accommodated in the insert slot; an interface layer formed on the surface of the base by chemical deposition; an insulation route formed on the surface of the base by ablating part of the interface layer with the laser beam radiation; and a metallic layer formed on the base by electroplating process thereby forming a plastic lead frame of excellent electrical conductivity and high light reflection property.
Abstract:
A molded interconnect device (MID) with a thermal conductive property and a method for production thereof are disclosed. A thermal conductive element is set in a support element to improve the thermal conductivity of the support element, and the support element is a non-conductive support or a metallizable support. A metallization layer is formed on a surface of the support element. If a heat source is set on the metallization layer, heat produced by the heat source will pass out from the metallization layer or the support element with the thermal conductivity material element.
Abstract:
A manufacturing method of forming an electrical circuit on a non-conductive carrier comprises following steps. After providing an electrically non-conductive carrier, catalysts are dispersed on or in the electrically non-conductive carrier. A predetermined track structure is formed on the electrically non-conductive carrier to expose the catalysts on the surface of the predetermined track structure. The surface of the predetermined track structure containing the catalysts is metalized to form a conductor track.