摘要:
Methods and systems for controlling temperatures in plasma processing chamber for a wide range of setpoint temperatures and reduced energy consumption. Temperature control is coordinated between a coolant liquid loop and a heat source by a control algorithm implemented by the plasma processing module controller. The control algorithm may completely stop the flow of coolant liquid to a temperature-controlled component in response to a feedback signal indicating an actual temperature is below the setpoint temperature. The control algorithm may further be based at least in part on a feedforward control signal derived from a plasma power or change in plasma power input into the processing chamber during process recipe execution.
摘要:
Methods and systems for controlling temperatures in plasma processing chamber for a wide range of setpoint temperatures and reduced energy consumption. Temperature control is coordinated between a coolant liquid loop and a heat source by a control algorithm implemented by the plasma processing module controller. The control algorithm may completely stop the flow of coolant liquid to a temperature-controlled component in response to a feedback signal indicating an actual temperature is below the setpoint temperature. The control algorithm may further be based at least in part on a feedforward control signal derived from a plasma power or change in plasma power input into the processing chamber during process recipe execution.
摘要:
Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
摘要:
Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.
摘要:
An electrostatic chuck provides reduced electric field effects about its peripheral edge. In one version, the chuck comprises a dielectric covering an electrode having a perimeter and a wire loop extending about the perimeter, the wire loop having a radially outwardly facing surface that is substantially rounded. Alternatively, the electrode may have a central planar portion comprising a top surface and a bottom surface, and a peripheral arcuate portion having a tip with a curvature length of at least about π/8 radians between a normal to the top surface of the central planar portion and a normal to the upper surface of the tip. The electrostatic chuck is used to hold a substrate in a process chamber of a substrate processing apparatus.
摘要:
A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving a peripheral annular portion of the backside exposed. The process further includes confining gas flow at an edge of the workpiece within a gap at the edge of the workpiece on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the front side and a lower process zone containing the backside. A first plasma is generated in a local plasma chamber from a polymer etch precursor gas. The process includes directing a localized stream of an etchant by-product from the first plasma onto a target portion of the backside of the workpiece, the target portion having a diameter corresponding to a diameter of the stream, while rotating the workpiece.
摘要:
A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving a peripheral annular portion of the backside exposed. Gas flow is confined at the edge of the workpiece within a gap at the edge of the workpiece, the gap configured to be on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the front side and a lower process zone containing the backside. The process further includes evacuating the lower process zone, generating a plasma in an external chamber from a polymer etch precursor gas, and introducing a by-product from the plasma into the lower process zone. The process further includes pumping a purge gas into the upper process zone to remove polymer etch species from the upper process zone.
摘要:
A reactor is provided for removing polymer from a backside of a workpiece. The reactor includes a vacuum chamber having a ceiling, a floor and a cylindrical side wall. A workpiece support apparatus within the chamber is configured to support a workpiece thereon, so that the workpiece has its front side facing the ceiling. The support apparatus leaves at least an annular periphery of the backside of the workpiece exposed. A confinement member defines a narrow gap with the outer edge of the workpiece, the narrow gap being on the order of about 1% of workpiece diameter, the narrow gap corresponding to a boundary dividing the chamber between an upper process zone and a lower process zone. A vacuum pump is coupled to the lower process zone. A lower external plasma-generating chamber introduces a plasma by-product into the lower process zone and a supply of a polymer etch precursor gas coupled to the lower external plasma-generating chamber. An upper external plasma-generating chamber is coupled to introduce a plasma by-product into the upper process zone and a supply of a scavenger species precursor gas coupled to the upper external plasma-generating chamber.
摘要:
A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving at least a peripheral annular portion of the backside exposed. The process further includes confining gas flow at the edge of the workpiece within a gap at the edge of the workpiece on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the wafer front side and a lower process zone containing the wafer backside. The process also includes providing a polymer etch precursor gas underneath the backside edge of the workpiece and applying RF power to a region underlying the backside edge of the workpiece to generate a first plasma of polymer etch species concentrated in an annular ring concentric with and underneath the backside edge of the workpiece.
摘要:
A workpiece is supported on the backside in a vacuum chamber while leaving at least a peripheral annular portion of a backside of the workpiece exposed. The process first increases the temperature of the workpiece starting at a temperature below about 200 degrees C. The edge of the workpiece is confined so as to establish a gap at the edge on the order of about 1% of the diameter of the chamber, the gap corresponding to a boundary between an upper process zone containing the front side and a lower process zone containing the backside. Before the workpiece temperature exceeds about 200 degrees C., backside polymer is removed using a first plasma containing polymer etch species in the lower process zone. After the workpiece temperature reaches about 300 degrees C., photoresist is stripped from the workpiece front side using by-products of a second plasma containing a photoresist strip species in the upper process zone.