摘要:
Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
摘要:
Embodiments of the invention provide methods for forming hafnium materials, such as oxides and nitrides, by sequentially exposing a substrate to hafnium precursors and active oxygen or nitrogen species (e.g., ozone, oxygen radicals, or nitrogen radicals). The deposited hafnium materials have significantly improved uniformity when deposited by these atomic layer deposition (ALD) processes. In one embodiment, an ALD chamber contains an expanding channel having a bottom surface that is sized and shaped to substantially cover a substrate positioned on a substrate pedestal. During an ALD process for forming hafnium materials, process gases form a vortex flow pattern while passing through the expanding channel and sweep across the substrate surface. The substrate is sequentially exposed to chemical precursors that are pulsed into the process chamber having the vortex flow.
摘要:
Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone one or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
摘要:
A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming. The pre-treating includes providing an inert gas flow in a process zone surrounding the HF-last surface, reacting hydrogen with an oxidizer in the process zone for a very short duration, and providing an inert gas flew in the process zone after the reacting.
摘要:
The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
摘要:
Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
摘要:
Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
摘要:
The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
摘要:
Methods and apparatus for providing constant emissivity of the backside of susceptors are described. Provided is a method comprising: providing a susceptor in a deposition chamber, the susceptor comprising a susceptor plate and a layer comprising an oxide, a nitride, an oxynitride, or combinations thereof, the layer being stable in the presence of the reactive process gases; and locating the wafer on a support surface of the susceptor plate. The method can further comprise selectively depositing an epitaxial layer or a non-epitaxial layer on a surface of the wafer. The method can also further comprise selectively etching to maintain the oxide, nitride, oxynitride, or combinations thereof layer.
摘要:
Methods and apparatus for providing constant emissivity of the backside of susceptors are provided. Provided is a susceptor comprising: a susceptor plate having a surface for supporting a wafer and a backside surface opposite the wafer supporting surface; a layer comprising an oxide, a nitride, an oxynitride, or combinations thereof located on the backside surface of the susceptor plate, the layer being stable in the presence of a reactive process gas. The layer comprises, for example, silicon dioxide, silicon nitride, silicon oxynitride, or combinations thereof. Also provided is a method comprising: providing a susceptor in a deposition chamber, the susceptor comprising a susceptor plate and a layer comprising an oxide, a nitride, an oxynitride, or combinations thereof, the layer being stable in the presence of the reactive process gases; locating the wafer on a support surface of the susceptor plate. The method can further comprises selectively depositing an epitaxial layer or a non-epitaxial layer on a surface of the wafer. The method further comprises selectively etching to maintain the oxide, nitride, oxynitride, or combinations thereof layer.