Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
Abstract:
Provided is an amplification circuit for amplifying an input signal. The amplification circuit includes an input stage including an input matching circuit that receives the input signal and an input attenuation circuit that attenuates a gain for the input signal outside an operating frequency band of the amplification circuit, a transistor that amplifies the input signal provided from the input stage, and an output stage including an output matching circuit that receives a signal amplified by the transistor and an output attenuation circuit that attenuates the gain for the input signal outside the operating frequency band of the amplification circuit, and the input attenuation circuit includes a first resistor and a second resistor that are connected to a ground voltage, a first passive element connected between the input matching circuit and the second resistor, and a second passive element connected between the first passive element and the first resistor.
Abstract:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
Abstract:
Provided is a feedback amplifier. The feedback amplifier includes: an amplification circuit unit amplifying a bust packet signal inputted from an input terminal and outputting the amplified voltage to an output terminal; a feedback circuit unit disposed between the input terminal and the output terminal and controlling whether to apply a fixed resistance value to a signal outputted to the output terminal; a packet signal detection unit detecting a peak value of a bust packet signal from the output terminal and controlling whether to apply the fixed resistance value; and a bias circuit unit generating a bias voltage, wherein the feedback circuit unit determines a feedback resistance value to change the fixed resistance value in response to at least one control signal and adjusts a gain by receiving the bias voltage.
Abstract:
Provided is a semiconductor device including a substrate in which an insulation layer is disposed between a first semiconductor layer and a second semiconductor layer, a through-hole penetrating through the substrate, the through-hole having a first hole penetrating through the first semiconductor layer and a second hole penetrating through the insulation layer and the second semiconductor layer from a bottom surface of the first hole, an epi-layer disposed inside the through-hole, a drain electrode disposed inside the second hole and contacting one surface of the epi-layer, and a source electrode and a gate electrode which are disposed on the other surface of the epi-layer.
Abstract:
Provided is a gate-all-around device. The gate-all-around device includes a substrate, a pair of heterojunction source/drain regions provided on the substrate, a heterojunction channel region provided between the pair of heterojunction source/drain regions, and a pair of ohmic electrodes provided on the pair of heterojunction source/drain regions, respectively. Each of the pair of heterojunction source/drain regions includes a pair of two-dimensional electron gas layers. The pair of ohmic electrodes extends toward an upper surface of the substrate and pass through the pair of heterojunction source/drain regions, respectively.
Abstract:
Provided is a cascode circuit including first and second transistors connected between a drain terminal and a source terminal in cascode form, a level sifter configured to change a voltage level of a switching control signal applied to a gate terminal and provide the changed switching control signal to a gate of the first transistor, a buffer configured to delay the switching control signal and provide the delayed switching control signal to a gate of the second transistor, and a first resistor connected between the level shifter and the gate of the first transistor.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
Disclosed are a field-effect transistor and a manufacturing method thereof. The disclosed field-effect transistor includes: a semiconductor substrate; a source ohmic metal layer formed on one side of the semiconductor substrate; a drain ohmic metal layer formed on another side of the semiconductor substrate; a gate electrode formed between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; an insulating film formed on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and a plurality of field electrodes formed on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.