摘要:
A broad band energy harvesting system to harvest energy from a structure and associated methods are provided. The system includes a structure carrying a plurality of environmentally produced vibration frequencies extending over a frequency range and an energy harvesting apparatus positioned in vibration receiving communication with the structure to harvest energy from the structure. Each energy harvesting apparatus includes broadly tuned energy harvesting generators having relatively low quality factor and corresponding relatively wide bandwidth. The energy harvesting generators collectively provide energy harvesting over multiple modes to thereby provide energy harvesting over a substantial portion of the frequency range. Each energy harvesting generator can include a cantilevered beam connected to a common backbone comprised of a resilient material configured to transfer energy between adjacent generators to further enhance energy harvesting.
摘要:
A broad band energy harvesting system to harvest energy from a structure and associated methods are provided. The system includes a structure carrying a plurality of environmentally produced vibration frequencies extending over a frequency range and an energy harvesting apparatus positioned in vibration receiving communication with the structure to harvest energy from the structure. Each energy harvesting apparatus includes broadly tuned energy harvesting generators having relatively low quality factor and corresponding relatively wide bandwidth. The energy harvesting generators collectively provide energy harvesting over multiple modes to thereby provide energy harvesting over a substantial portion of the frequency range. Each energy harvesting generator can include a cantilevered beam connected to a common backbone comprised of a resilient material configured to transfer energy between adjacent generators to further enhance energy harvesting.
摘要:
A piezoelectric planar composite apparatus to provide health monitoring of a structure and associated methods are provided. The piezoelectric planar composite apparatus includes a piezoelectric electric material layer, multiple electrodes positioned in electrical contact with the piezoelectric material layer, and multiple sets of electrode interconnect conductors each positioned in electrical contact with a different subset of the of the electrodes and positioned to form multiple complementary electrode patterns. Each of the complementary electrode patterns is positioned to form an electric field having an electric field axis oriented along a different physical axis from that of an electric field formed by at least one other of the complementary electrode patterns. The interconnect conductors can be distributed over several electrode interconnect conductor carrying layers to enhance formation of the different complementary electrode patterns.
摘要:
A piezoelectric planar composite apparatus to provide health monitoring of a structure and associated methods are provided. The piezoelectric planar composite apparatus includes a piezoelectric electric material layer, multiple electrodes positioned in electrical contact with the piezoelectric material layer, and multiple sets of electrode interconnect conductors each positioned in electrical contact with a different subset of the electrodes and positioned to form multiple complementary electrode patterns. Each of the complementary electrode patterns is positioned to form an electric field having an electric field axis oriented along a different physical axis from that of an electric field formed by at least one other of the complementary electrode patterns. The interconnect conductors can be distributed over several electrode interconnect conductor carrying layers to enhance formation of the different complementary electrode patterns.
摘要:
A method of making a solid state thermal transfer device includes first and second electrically conductive substrates that are positioned opposite from one another. The solid state thermal transfer device also includes a sealing layer disposed between the first and second electrically conductive substrates and a plurality of hollow structures having a conductive material, wherein the plurality of hollow structures is contained by the sealing layer between the first and second electrically conductive substrates.
摘要:
A refrigeration system is provided. The refrigeration system includes at least one thermal blocking thermotunneling device. The thermal blocking thermotunneling device comprises a first and a second surface separated by a nanoscale gap of less than about 20 nm, such that tunneling of electrons causes a unidirectional transfer of heat from the first surface to the second surface. Further, the at least one thermal blocking thermotunneling device has a thermal back path of less than about 70 percent.
摘要:
A light source includes a substrate; an array of un-packaged light emitting semiconductor devices (LESDs), each of the LESDs having at least one surface for emitting light and a substrate surface being attached to the substrate; and a plurality of electrical connections, each electrical connection coupled for providing electrical power to a respective LESD. The LESDs are arranged on the substrate with sufficient density and light generating capability to provide a predetermined irradiation from the light source.
摘要:
A method for interconnecting high-temperature silicon carbide (SiC) devices enables such high-temperature devices to be used in fabricating electronic circuits of significant scale. This method comprises empirically measuring operational characteristics of a plurality of the devices to be interconnected, the operational characteristics comprising devices which are measured to be non-working and devices which are measured to be working; characterizing the operational characteristics in an operational characteristics map; designing interconnection paths between and among the devices that are characterized to be working by the operational characteristics map; and excluding from the interconnection paths, devices that are characterized to be non-working by the operational characteristics map. A preferred embodiment of this method further includes disposing a temporary polymer layer over the devices; forming via holes through the temporary polymer layer, to bonding pads of the devices; applying a current-balancing resistive metal over the temporary polymer layer; establishing connections between the current-balancing resistive metal and the bonding pads; designing the interconnection paths between and among the working devices by patterning the current-balancing resistive metal based on the operational characteristics map; and removing the temporary polymer layer.
摘要:
A method for coupling electrically conductive bushings in a bus, including alternating layers of dielectric material and patterned, electrically conductive bus bars and having through holes therein with each through hole having a surface exposing a portion of a respective one of the bus bars, includes: applying a polymer mixture to the surface of each through hole; inserting the bushings in the respective through holes; and curing the polymer mixture by positioning the bus and bushings in a curing chamber, applying a vacuum to the curing chamber, and applying pressure to reduce voids in the polymer mixture and minimize further void formation.
摘要:
A high density interconnected multi-chip module is provided with a stress-reducing compliant material disposed around the chips prior to molding a polymeric substrate around the chips. Chips having contact pads are placed face down on a layer of adhesive supported by a base. A compliant material is deposited around the chips, and then a mold form is positioned around the chips. Polymeric substrate molding material is added within the mold form, and then the substrate molding material is hardened. A dielectric layer having vias aligned with predetermined ones of the contact pads and having an electrical conductor extending through the vias is situated on the hardened substrate molding material and faces of the chips. A thermal plug may be affixed to the backside of a chip prior to the addition of substrate molding material.